Deep Learning (Introduction)

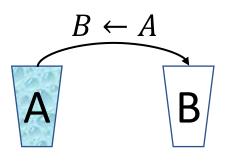
Sadegh Eskandari

Department of Computer Science, University of Guilan eskandari@guilan.ac.ir

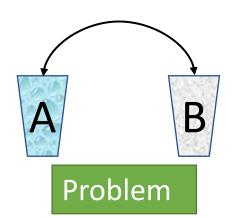
Today ...

- A high-level review of machine learning (ML)
- A high-level introduction to deep learning (DL)

Consider a robot with a single capability: pouring one glass into another







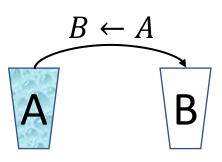
$$C \leftarrow A$$

$$A \leftarrow B$$

$$B \leftarrow C$$

Algorithm

Consider a robot with a single capability: pouring one glass into another

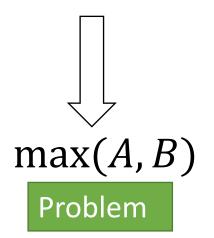


A, B

Another Question: How to find the max of two glasses?

The problem is unsolvable by the robot. Why?

- The comparison operation is not defined for the robot
- To solve the problem we should change the operator



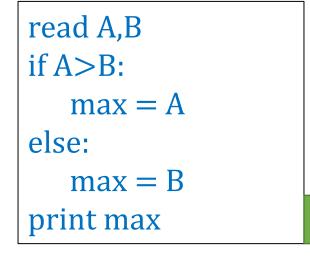
Capabilities:

- Input/Output (I/O)
- o memory W/R
- O Some basic arithmetic and logical operations (+,-,*,/, %, and, or, not, ...)

Algorithm

Operator (Computer)

Problem: How to find the max of two glasses?



 $\max(A, B)$ Problem

A, B

- A problem is said to be Decidable if we can always construct an algorithm that can solve the problem correctly.
- An example of undecidable problems:

Can one algorithm specify the output of another algorithm?

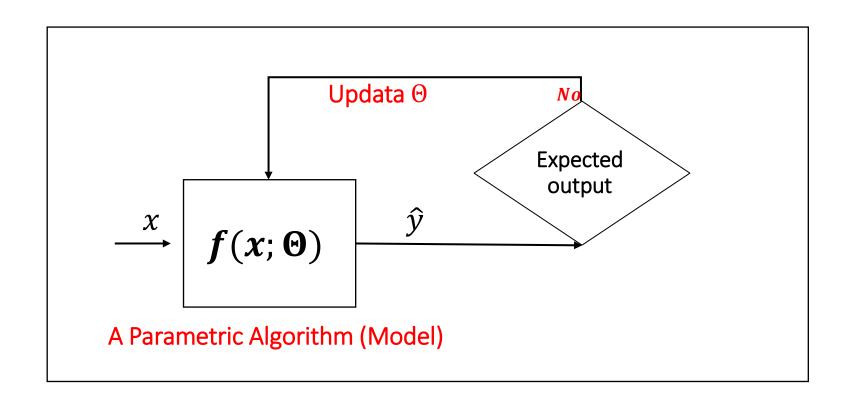
- Decidability does not mean simplicity!
 - ☐ Traveling Salesman Problem (TSP): simple to program but hard to execute
 - ☐ Recognizing dogs and cats in an image: simple to do but hard to program

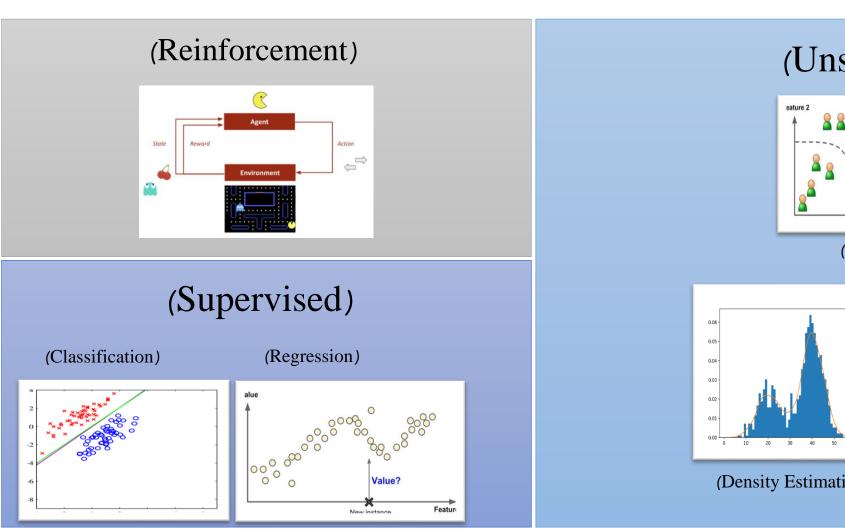
Traveling Salesman Problem (TSP)

- For a given weighted complete graph with *n* nodes, find the Hamilton circuit with minimum length.
- \circ An algorithm should compare (n-1)! circuits to find the best one.
- o Time required to run this algorithm on a good computer:
 - \square n = 4 then $time \approx 0.000000007s$
 - \square n = 99 then $time \approx 3.1 \times 10^{140} \ years <math>\odot$

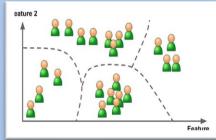
Dogs vs Cats

An effective approach: Machine Learning

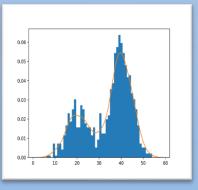




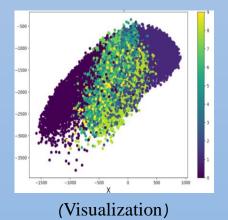
(Unsupervised)



(Clustering)



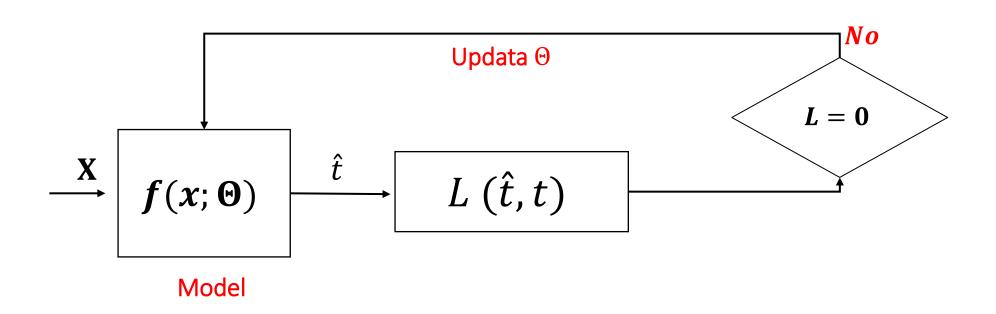
(Density Estimation)



O Supervised Learning: Suppose that we are given a training set comprising N observations of random variable x (training set):

$$\mathbf{X} = (x_1, x_2, \dots, x_N)^T$$

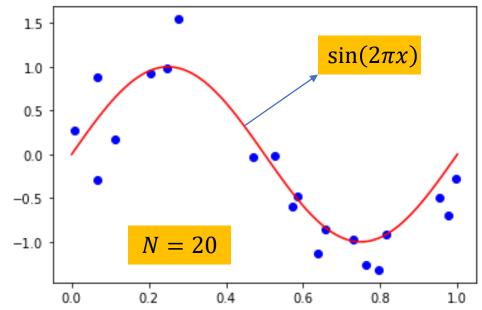
O Moreover, for each observation x_i we are given a target value t_i (training target): $\mathbf{t} = (t_1, t_2, ..., t_N)^T$

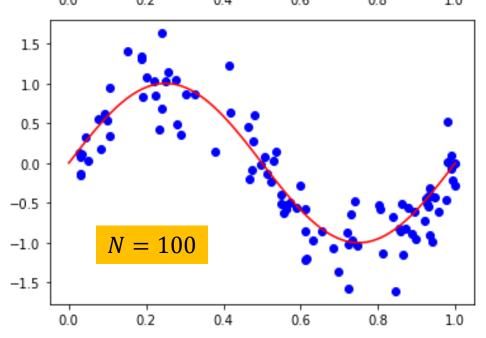


- o $\mathbf{x} = \{x_1, x_2, ..., x_N\}$ is generated uniformaly in [0,1].
- o $\mathbf{t} = \{t_i | t_i = \sin(2\pi x) + \mathcal{N}(0,0.3), i = 1, 2, ..., N\}$
- The generating function in not known and the aim is to estimate it such that:
 - ☐ The estimated function should describe the training data
 - ☐ The estimated function should generalize to new data
- In particular, we shall fit the data using a polynomial function of the form

$$y(x; \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M$$

- \square *M*: the order of polynomial
- $w \equiv [w_0, w_1, ..., w_M]$: The model parameters (unknown in advance)
- o y(x, w) is a linear function of the coefficients w. Such functions are called linear models.

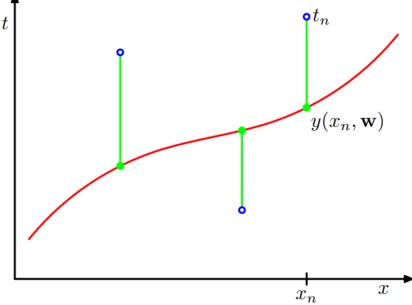


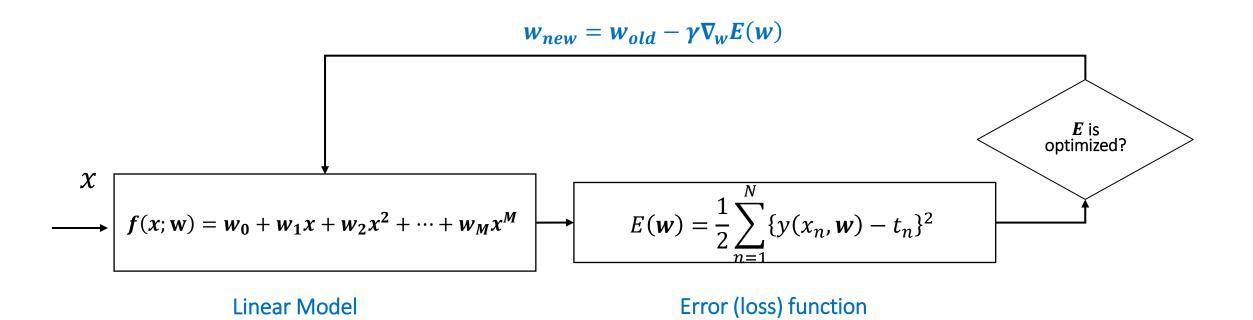


An error function (loss function) is required to measure the misfit between the function $y(x, \mathbf{w})$, for any given \mathbf{w} , and the training data points.

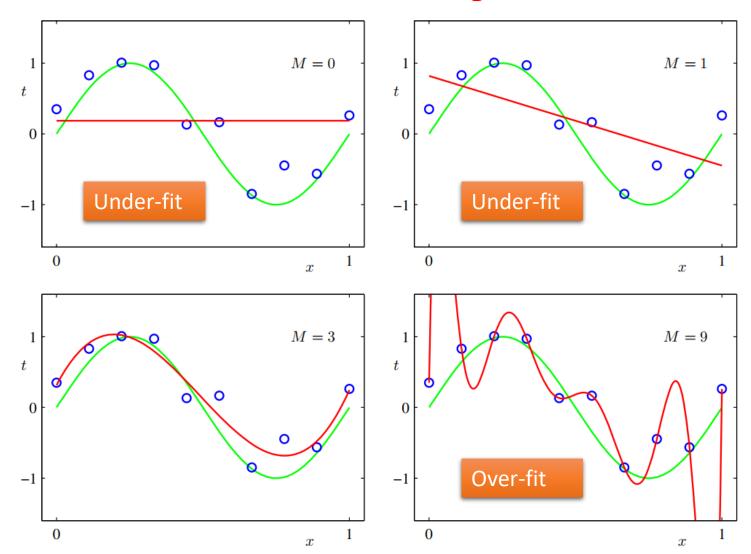
$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

- \circ $E(\mathbf{w})$ is a quadratic function of \mathbf{w} ,
- Therefore $\frac{\partial E}{\partial w}$ is linear in the elements of w, and so the minimization of the error function has a unique solution, which can be found in closed form.

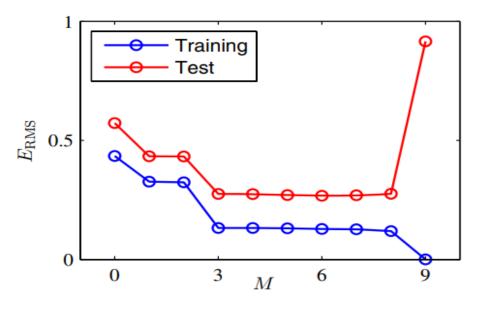




Model Selection (Model Comparison)

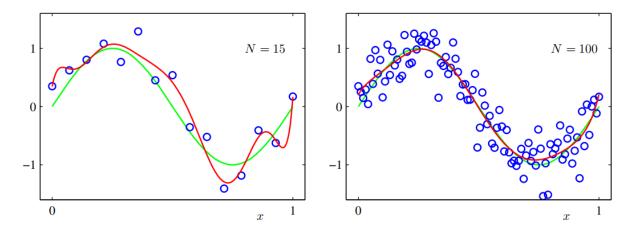


	M = 0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
$w_3^{\overline{\star}}$			17.37	48568.31
w_4^\star				-231639.30
w_5^\star				640042.26
w_6^\star				-1061800.52
w_7^\star				1042400.18
w_8^\star				-557682.99
w_9^\star				125201.43
	•			



Model Selection (Model Comparison)

o For a given model complexity, the overfitting problem become less severe as the size of the data set increases.

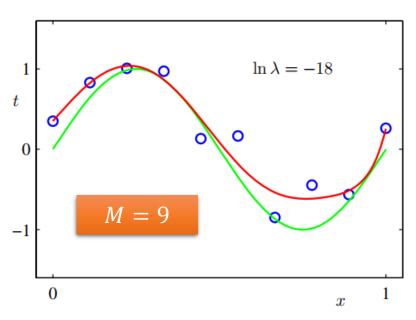


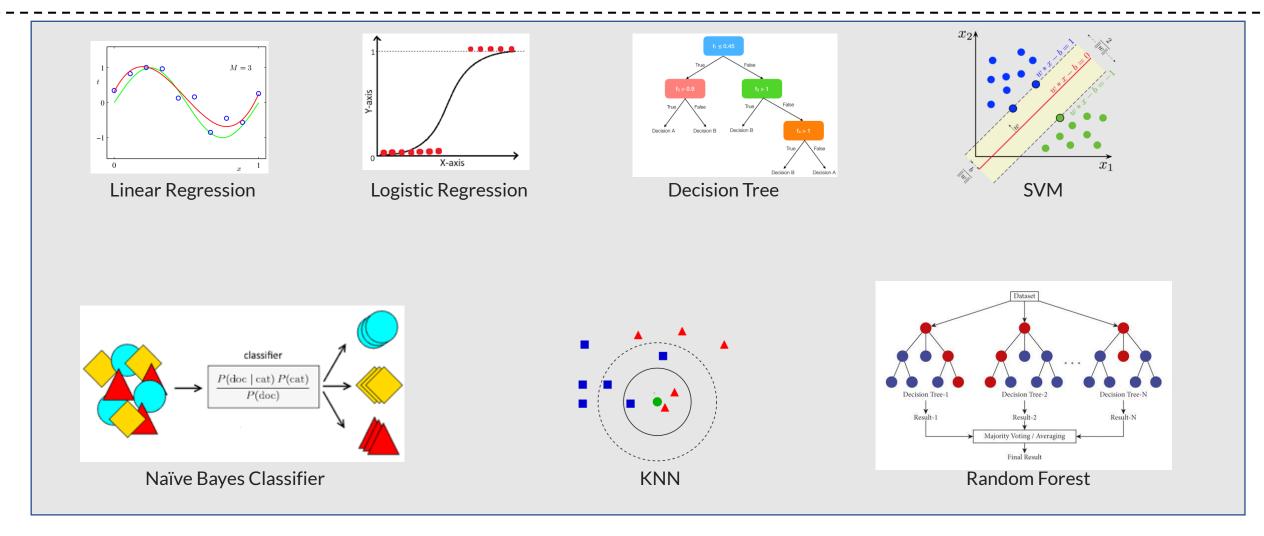
One technique that to control the over-fitting phenomenon regularization, which involves

adding a penalty term to the error function.

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

Where
$$\|\mathbf{w}\|^2 = \mathbf{w}^T \mathbf{w} = w_0^2 + w_1^2 + \dots + w_M^2$$

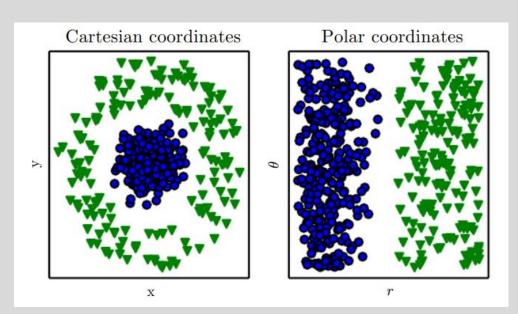




Classic Machine Learning Algorithms (Supervised)

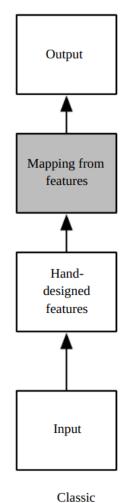
What's the problem with classic machine learning approaches?

- Their input is a set of hand-designed features.
- The performance of these simple machine learning algorithms depends heavily on the representation of the data they are given.
- Therefore, designing a right set of features is the most important in these approaches.



Example: Different feature representation designed to separate two categories of data using a linear classifier

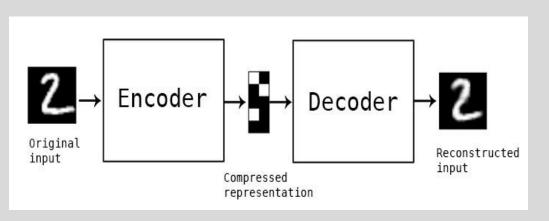
Solution: Representation Learning



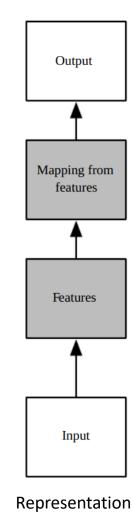
Classic machine learning

Representation Learning

- Representation learning is to use machine learning to discover not only the mapping from representation to output but also the representation itself.
- **Example: Autoencoders**

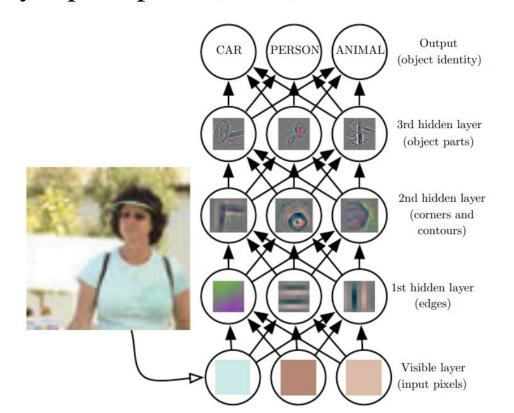


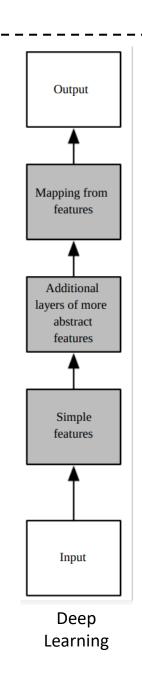
- An autoencoder is the combination of an encoder function and a decoder function
- The encoder converts the input data into a different representation,
- decoder converts the new representation back into the original format.
- Autoencoders are trained to preserve as much information as possible when an input is run through the encoder and then the decoder

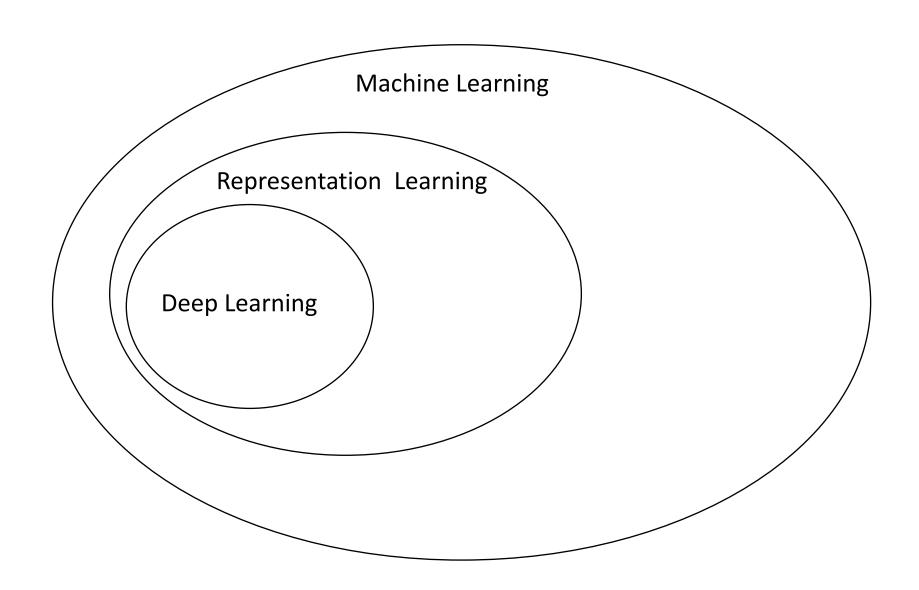


Learning

- Deep learning is a class of representation learning that uses different levels of representations
- Higher-level representations are expressed in terms of other, lower-level and simpler representations
- Example: Multi-layer perceptron (MLP)

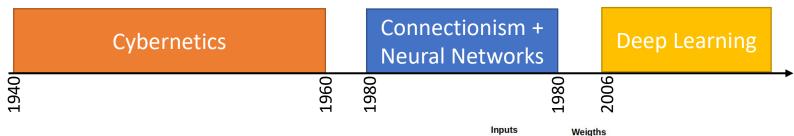




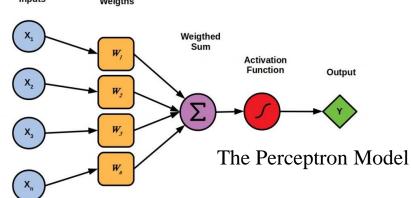


History

Deep learning has had a long and rich history, but has gone by many names

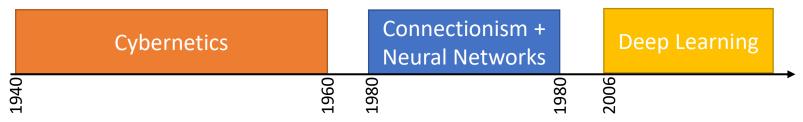


- Cybernetics (the first wave)
 - Development of theories of biological learning (McCulloch and Pitts, 1943; Hebb, 1949)
 - Perceptron (Rosenblatt, 1958)
 - Universal approximation theorem
 - O Any continuous function $f : [0,1]^n \to [0,1]$ can be approximated arbitrarily well by a neural network with at least 1 hidden layer with a finite number of weights



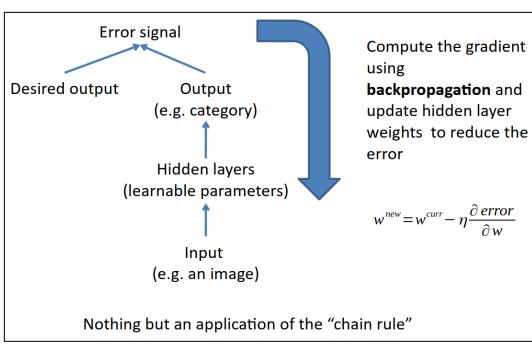
History

Deep learning has had a long and rich history, but has gone by many names



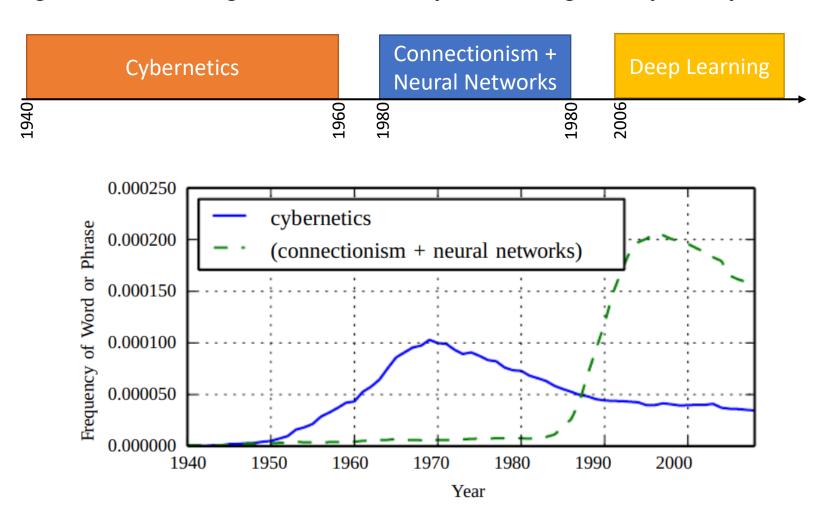
- Connectionism (the second wave)
 - o backpropagation (Rumelhart et al., 1986a)

Source: Deep learning course, Emre Akbas, https://user.ceng.metu.edu.tr/~emre/Fall2021-DeepLearning.html



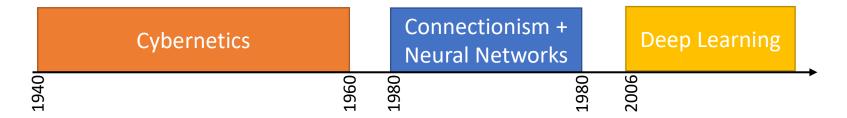
History

Deep learning has had a long and rich history, but has gone by many names



History

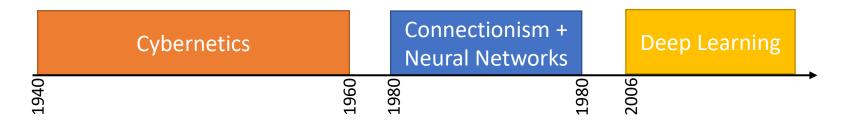
Deep learning has had a long and rich history, but has gone by many names



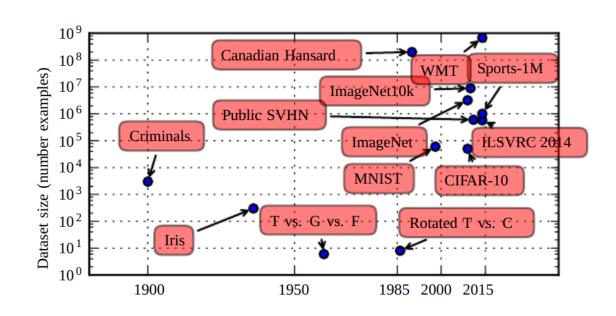
- Why did researchers abandon backpropagation?
 - O It was not able to be used in complex networks with multiple hidden layers!
- Today, the researchers have found the real reasons:
 - Datasets were too small.
 - o Computers were too slow.
 - The weight initialization was wrong
 - The activation functions were ineffective

History

Deep learning has had a long and rich history, but has gone by many names

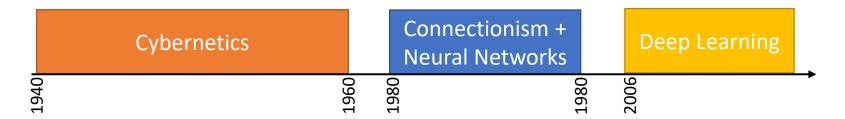


Deep learning (the third wave)

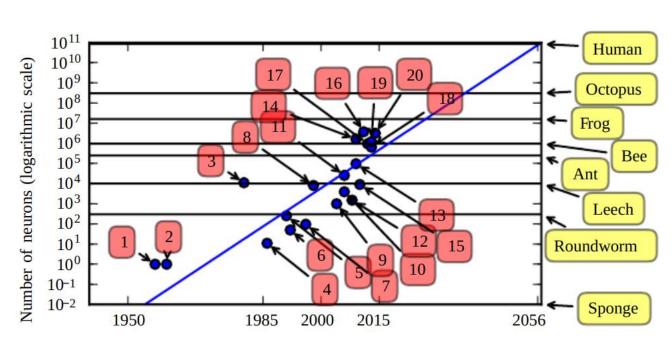


History

Deep learning has had a long and rich history, but has gone by many names

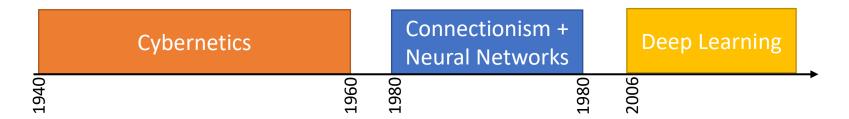


- Deep learning (the third wave)
 - Since the introduction of hidden units, artificial neural networks have doubled in size roughly every 2.4 years.

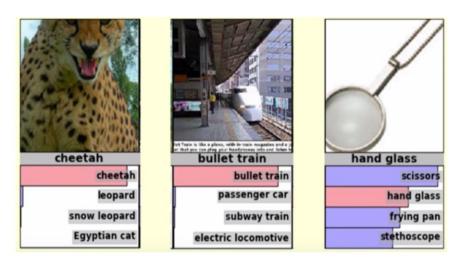


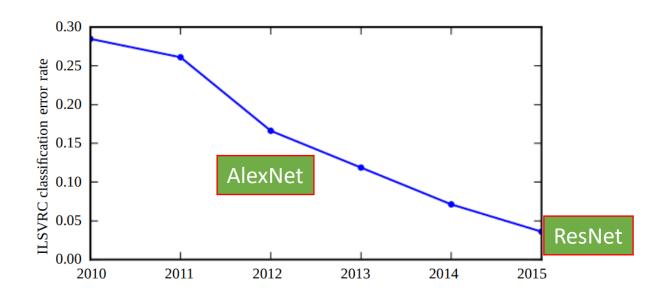
History

Deep learning has had a long and rich history, but has gone by many names



Deep learning (the third wave)





Deep learning is everywhere!!

