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Biological Neurons

o Dendrites  receive  impulses
(synapses) from other cells.

o The cell body fires (sends signal)
If the recelved impulses are more
than a threshold.

Dendrites

Axon Terminals

and 1s delivered to other cells via
axon terminals

Cell Body
(Soma)

Axon
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Biological Neurons

AN

-.'—“\..“v ."’ "“r. -—'..' -
': z - :-ll - - SR = “.
‘.*.-.O‘ ” l. — "‘\' » ‘.
,' qlfaz- :s..ék-. {i‘“‘ .‘ :‘.. “. ‘."i‘m

. *'*

-

'{"’ :—g . X "-\-—..-‘ -.s.

’ G-‘—“\‘; '%’8""—' —— " . “' ..‘ 3”.‘ »
- » -l

'-.- .. Bl L L s——T “‘- :‘Zt‘ (N'Qr‘..~”‘ L :_
Rbd T T on - o e “, T o Sam

_ ‘é” fesmsm e ST ) & ,,. {,.“,‘.3!'"&:'- ﬁ,.

.- ;-g‘ . ‘." -"' \\-\ o4 ."‘. ‘\ ) S ?_

’,‘ ‘..‘ ‘“ - ~{ p—
"' al“'m 0;“ W\ ;E:P

Liif - TR —— " —-—

,’,,',’,"'-s. .@":&:ssﬂ-mﬂ? ﬁ
A -acv-xt-l gx'?‘:‘&ﬁ!?"'&..
‘\‘q‘..;‘l‘d- 2 ’ ‘g ‘.'

. . —‘“ .i "n - T g .. N
N .:: -.3----0-“\50——\ -no' Al s ”';"- ? "" et »;

O A g N I ANN W s ——ay iy .m k‘ \.{ A\ A\

e N o - -qi,,so:‘ ‘th }’d ’ 2 il
*‘\:-‘-‘.' 3 \.'"‘ : .; o.’o _— Lt

P e e \&‘.h; .’52

\

“H ";,' - -? - L — :
RN - ""?Z:‘:"."«i‘{’; ’ '."l"?z "‘ﬁ v:m o B4 s S
L AR -~.-_'d.;w — ..1 s Ay “.“:." " .

L S e e S =21 -+ m’%ch L I—pd
| v ' 4 T s N : : ‘ -
i o s B S _ S SN )

Multiple layers in a biological neural network of human cortex

Source: Montesinos Lopez, O.A., Montesinos Lépez, A. and Crossa, J., 2022. Fundamentals of Artificial Neural Networks and
Deep Learning. In Multivariate Statistical Machine Learning Methods for Genomic Prediction (pp. 379-425). Springer, Cham.



Biological Neurons
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The postnatal development of the human cerebral cortex

Source: https://developingchild.harvard.edu/



Artificial Neurons

Dendrites Soma

Inputs Weights

Transfer Activation
Function Function
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Artificial Neurons
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Multi-Layer Perceptron (MLP): Notations




Multi-Layer Perceptron (MLP): Notations

Wij The weight of edge from neuron i of layer [ — 1 to neuron j of layer [



Multi-Layer Perceptron (MLP): Notations




Training a Single Neuron

Inputs Weights

Step 1: Loss function

L= —0)?=(y; — <P(WTxi))2

N
L= le
i=1

Transfer Activation
Function Function

Q@ —— o

Step 2: The objective function
w

X = (%1, Xg, o, xy)T Step 3: Optimization

X; = (X1, Xi2, oo Xin)T Initialize w
r foriter = 1to K:
y=(y1'y2' "'lyN) VWL= i i i

ow,’ ow,’ 7 awy,
Whnew = Woig — Y Vy L

Training data
N: num of data
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Training an MLP (Backpropagation)

o As we know, VL plays a central role in finding the optimal parameters of model

o But calculating the gradients in multi-layer neural networks is not a trivial task!!

o Solution: Backpropagation (Rumelhart et al., 1986a)



Training an MLP (Backpropagation)

Computational Graphs: A simple example

fx,y,2) = (x +y)z x% q
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Training an MLP (Backpropagation)

fx,y,z) = (x +y)z y —
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Training an MLP (Backpropagation)

fx,y,z) = (x +y)z y —
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Training an MLP (Backpropagation)

fx,y,z) = (x +y)z y —
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Training an MLP (Backpropagation)
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Training an MLP (Backpropagation)

fx,y,z) = (x +y)z y 5 .

eg.x=-2,y=5,z=-4 z -
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Training an MLP (Backpropagation)

Computational Graphs: A simple example

X
q 3
5 ¥ 4 212
fx,y,z) = (x +y)z Yy 4. (+ 1f
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Training an MLP (Backpropagation)
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Training an MLP (Backpropagation)




Training an MLP (Backpropagation)

“local gradient”




Training an MLP (Backpropagation)

“local gradient”
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Training an MLP (Backpropagation)

I
“local gradient”
AR
oL
0z
b=
oL 3, -
gradients



Training an MLP (Backpropagation)
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“local gradient”
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Training an MLP (Backpropagation)

Step 1: Loss function

L= —0)?=(y; — <P(WTxi))2

N
L= le
i=1

Layer 2 Layer 3

Step 2: The objective function

wlw?2 w3

X = (xq, X, .., xy)T oot
(x1, %2 N) . Step 3: Optimization

Xj = (X1, X2, o) Xin)

Initialize Wl-kj

foriter = 1toK:
foreachi,j, k:

y =LY o YT

|
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| arg min L
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Training data :
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L
N: num of data (Wl’\;) — (Wl’\;) — a_k
n: dimension of each data point new old aWij



Training an MLP (Backpropagation)

Layer 3

dL dL 6031

3 = 3

dL dL 6031

3 = 3




Training an MLP (Backpropagation)

Layer 2

dL dL 6031 8021
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Training an MLP (Backpropagation)

Layer 2
dL dL 6031 8021 oL
2 2 2 =?
dL dL 6031 awll 6031 6021 awll anll
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Training an MLP (Backpropagation)

oh _0oh of oh g

ox _9f ox ag \ ox

h(f(x), g(x))




Training an MLP (Backpropagation)

oL _ oL 6031 9 8021 oL
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Training an MLP (Backpropagation)

6022

Layer 2 Layer 3
dL a dL 6031 8021 oL
dL 0L 0oz dwf, 003 00y 0w owi,
ows, oz Ow, 3 3 3 3 _( oL a031 0031 0011
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OL _ OL 003 50222 Memoization: Avoid redindant
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Activation Functions Revisited

o Sigmoid and Tanh are the two most used traditional
activation functions in neural networks

O Z—i € [0,1] for both functions ®

oL 4 0L .
owi, ows,

oL dL d 0 0 oL d d d
. 031 . 021 . 011 n % 031 . 022 . 011
6031 6021 6011 6W111

0031 005, 00y, 0w,
o I m |
oL OL  dos,

= X
ows; 0031 0wy dL oL

ows,” o

o As we move backward the input, the values of the partial
derivatives become smaller.

o Consider computing

1
0wy
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o This is called Vanishing Gradients



Activation Functions Revisited

o What’s the problem with the vanishing gradients?

o Consider the optimization phase in GD method:

dL

k
)

(Wikj)new - (Wikj)old —r ow

JL
k ~ 0)1

Lj
(Wlkj new ~ (Wllj old

o If the gradient is vanished (

ow

0.4 -

o This happens in early layers of a large neural
network




Activation Functions Revisited

o RelLU: Rectified Linear Units

RelLU activation function
X 8(x)
5 _

4

3,
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Activation Functions Revisited

o ReLU: Rectified Linear Units

RelLU activation function
X 8(x)

O Z—fC € {0,1} for both functions ©

o Consider computing oL

1 [ ]
owi,

1
ow;;

JL oL d 0 0 dL 0 0 0
( . 031>< 021)( 011)+< % 031>< 022>< 011)

6031 6021 6011 6W111 6031 6022 0011 6W111

BEEIDE OBE BA K

o ReLU neurons cannot learn on examples for which
their activation is zero (Dead Activations).




Activation Functions Revisited

RelLU vs Tanh

Source: Krizhevsky, A., Sutskever, |. and Hinton, G.E., 2017. Imagenet classification with deep convolutional neural networks. Communications

3.1 ReLU Nonlinearity

The standard way to model a neuron’s output f as
a function of its input = is with f(z) = tanh(z)
or f(x) = (1 + e ®)7!L. In terms of training time
with gradient descent, these saturating nonlinearities
are much slower than the non-saturating nonlinearity
f(z) = max(0,x). Following Nair and Hinton [20],
we refer to neurons with this nonlinearity as Rectified
Linear Units (ReLUs). Deep convolutional neural net-
works with ReLLUs train several times faster than their
equivalents with tanh units. This is demonstrated in
Figure 1, which shows the number of iterations re-
quired to reach 25% training error on the CIFAR-10
dataset for a particular four-layer convolutional net-
work. This plot shows that we would not have been
able to experiment with such large neural networks for
this work if we had used traditional saturating neuron
models.

We are not the first to consider alternatives to tradi-
tional neuron models in CNNs. For example, Jarrett
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Figure 1: A four-layer convolutional neural
network with ReLUs (solid line) reaches a 25%
training error rate on CIFAR-10 six times faster
than an equivalent network with tanh neurons
(dached line) The learnine rates for each net-

of the ACM, 60(6), pp.84-90.




Activation Functions Revisited

Leaky RelLU or it

Leaky Rectified Linear Unit, or Leaky RelLU, is a type of activation function based on a ReLU, butithasa
small slope for negative values instead of a flat slope. The slope coefficient is determined before training,
i.e. it is not learnt during training. This type of activation function is popular in tasks where we we may

suffer from sparse gradients, for example training generative adversarial networks.

Source: https://paperswithcode.com/method/leaky-relu

Paper: Maas, A.L., Hannun, AY. and Ng, AY., 2013, June. Rectifier nonlinearities improve neural network acoustic models. In Proc. icml (Vol.
30, No. 1, p. 3).



Activation Functions Revisited

Parameterized RelLU i

Introduced by He et al. in Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

Font

A Parametric Rectified Linear Unit, or PReLU, is an activation function that generalizes the traditional

rectified unit with a slope for negative values. Formally: f =y
fys) =yiify; > 0 707=0 y

flyi)) = awyiif y; <0

The intuition is that different layers may require different types of nonlinearity. Indeed the authors find in
experiments with convolutional neural networks that PRelLus for the initial layer have more positive
slopes, i.e. closer to linear. Since the filters of the first layers are Gabor-like filters such as edge or texture
detectors, this shows a circumstance where positive and negative responses of filters are respected. In
contrast the authors find deeper layers have smaller coefficients, suggesting the model becomes more

discriminative at later layers (while it wants to retain more information at earlier layers).

Source:https://paperswithcode.com/method/prelu#:~:text=A%20Parametric%20Rectified%20Linear%20Unit,if%20y%20i%20%E2%89%A4%?2
00

Paper: He, K., Zhang, X., Ren, S. and Sun, J., 2015. Delving deep into rectifiers: Surpassing human-level performance on imagenet
classification. In Proceedings of the IEEE international conference on computer vision (pp. 1026-1034).



Regularization

o The aim of regularization is to avoid overfitting

o L1-Regularization

L= Zl +AZ|W

L,j,k

L = ZI +2 ) (wh)’

i,j,k

o L2-Regularization



Regularization

Source: Srivastava, N., Hinton,
G., Krizhevsky, A., Sutskever, I.
and Salakhutdinov, R., 2014.
Dropout: a simple way to
prevent neural networks from
overfitting. The journal of
machine learning
research, 15(1), pp.1929-1958.
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(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably




Regularization

o Dropout: a very simple and elegant approach to apply regularization to neural networks

Source: Srivastava, N., Hinton,
G., Krizhevsky, A., Sutskever, I.
and Salakhutdinov, R., 2014.

PW

Dropout: a simple way to Present with Always
preve'nt' neural netyvorks from probability p present
overfitting. The journal of (a) At training time (b) At test time

machine learning

research, 15(1), pp.1929-1958. Figure 2: Left: A unit at training time that is present with probability p and is connected to units

in the next layer with weights w. Right: At test time, the unit is always present and
the weights are multiplied by p. The output at test time is same as the expected output
at training time.




Weight Initialization

o Designing initialization strategies is a difficult task because neural network optimization is
not yet well understood.

o Our understanding of how the initial point affects generalization is especially primitive,
offering little to no guidance for how to select the initial point.

o Perhaps the only property known with complete certainty is that the initial parameters need
to “break symmetry” between different units.

« |If two hidden units with the same activation function are connected to the same inputs, then these units
must have different initial parameters.

o General Rules:
« Larger initial weights will yield a stronger symmetry-breaking effect. Therefore, the initial weights
should be small (not very small)

«  The initial weights should not be zero to avoid dead activation phenomenon

« Initial weights should have good variance to cover different viewpoints



Weight Initialization

Fan-in f — Fan-out

o Uniform Initialization (traditionally for Sigmoid and Tanh units)

ey~ 1
W..~ )
N \/fanin \/fanin
o  Xavier / Glorot Initialization [1] (for Sigmoid)

wk~U —Vo v
N \/fanin + fanoy: ’ \/fanin + faney;

K~N|{0 -
Wij ,fanin + fanout

[1]: Glorot, X. and Bengio, Y., 2010, March. Understanding the difficulty of training deep feedforward neural networks. In Proceedings
of the thirteenth international conference on artificial intelligence and statistics (pp. 249-256). JMLR Workshop and Conference
Proceedings.



Weight Initialization

Fan-in f — Fan-out
o He Initialization [1] (for ReLU)
wh~y (=Y. V6 k N(O ‘ )
ij~ , Wij~ ,
g \/fanm \/fanm g fany,

[1]:, K., Zhang, X., Ren, S. and Sun, J.,, 2015. Delving deep into rectifiers: Surpassing human-level performance on imagenet
classification. In Proceedings of the IEEE international conference on computer vision (pp. 1026-1034)..



Weight Initialization

0951
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_— E‘r’iﬂa‘r[w!] =1 ours
0.8k
- Varlwy] =1 Xavier
D_?E | l il i
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Figure 2. The convergence of a 22-layer large model (B in Ta-
ble 3). The x-axis is the number of training epochs. The y-axis is
the top-1 error of 3,000 random val samples, evaluated on the cen-
ter crop. We use ReLU as the activation for both cases. Both our

initialization (red) and “Xavier” (blue) [7] lead to convergence, but
ours starts reducing error earlier.

Source: K., Zhang, X., Ren, S. and Sun, J., 2015. Delving deep into rectifiers: Surpassing human-level performance on imagenet
classification. In Proceedings of the IEEE international conference on computer vision (pp. 1026-1034)..



Weight Initialization

1
08K —— =i Var[w,] =1 ours

N~

OB ooem AVarlw) =1 Xavier

o 1 2 32 4 5 6 7 8 9

Epoch
Figure 3. The convergence of a 30-layer small model (see the main
text). We use ReLLU as the activation for both cases. Our initial-
ization (red) is able to make it converge. But “Xavier” (blue) [7]

completely stalls - we also verify that its gradients are all dimin-
ishing. It does not converge even given more epochs.

Source: K., Zhang, X., Ren, S. and Sun, J., 2015. Delving deep into rectifiers: Surpassing human-level performance on imagenet
classification. In Proceedings of the IEEE international conference on computer vision (pp. 1026-1034)..



