Deep Learning:
(Optlmlzatlon)

\

Sadegh Eskanda”rl

Department of Computer Science, University of Guilah-" |
eska '..dari@guilan.ac.' r
; " ..'; ‘.

o Intro to Optimization
o Gradient Descent

o Hessian Matrix

o Convex Optimization

o Optimization For Deep Learning

Step 1: Loss function

L= —0)?=(y; — <P(WTxi))2
N

L= le
i=1

Step 2: The objective function

wlw?2 w3

X = (xl,xz, ...,xN)T

. Step 3: Optimization
Xj = (Xi1, Xi2) -+ Xin)

How to calculate L. and

Initialize Wl'j how to updatew

foriter = 1toK:
foreachi,j, k:

ij*
y =LY o YT

Training data
N: num of data
n: dimension of each data point

dL

(Wikj)new - (Wikj)old N]/'—

|
|
|
|
|
|
|
|
|
|
|
|
|
| arg min _L
|
|
|
|
|
|
|
|
|
|
|
| GWU

Intro to Optimization

o Optimization refers to the task of either minimizing or maximizing some function
f (x) by altering x.

o We usually phrase most optimization problems in terms of minimizing f(x).
* Maximization may be accomplished via a minimization algorithm by minimizing —f (x).

o The function we want to minimize or maximize is called the objective function , or

criterion.
 When we are minimizing it, we may also call it the cost function , loss function, or error function.

o We often denote the value that minimizes or maximizes a function with a
superscript . For example, we might say x* = argmin f(x).

o The derivative f'(x) gives the slope of f(x) at the point x
* |t specifies how to scale a small change in the input to obtain the corresponding change in the
output: f(x +¢€) = f(x) + ef'(x).
« Therefore, it is useful for minimizing a function because it tells us how to change x in order to
make a small improvement in y.

Gradient Descent

o We can reduce f(x) by moving x in small steps with the opposite sign of the

derivative.
» This technique is called gradient descent (Cauchy, 1847).

20K T T T T T T T
\ /
15F N\ Global minimum at « = 0. /7 -
\ Since f’(z) = 0, gradient /
10k \ descent halts here. 7 i
N 7
N 7/
0.5 F -
N ”
e o
0.0} S -
' For x < 0, we have f'(x , For x > 0, we have f’(x) >|0,

so we can decrease f b so we can decrease f by
—0.5 F moving rightward. moving leftward. -
—1.0}F ~

1.2

s J) =S
—15}F -

— f@) =2

—2.0 | | | | | | |

=20 =15 =10 =0.5 0.0 0.5 1.0 1.5 2.0

Gradient Descent: Critical Points

o When f'(x) = 0, the derivative provides no information about which direction to
move.

o Points where f ‘(x) = 0 are known as critical points, or stationary points.

Minimum Maximum Saddle point

M

Gradient Descent: Approximate Minimization

o Approximate minimization: Optimization algorithms may fail to find a global
minimum when there are multiple local minima or plateaus present.

o In the context of deep learning, we generally accept such solutions even though
they are not truly minimal

This local minimum
performs nearly as well as
the global one,

so it is an acceptable
halting point.

Ideally, we would like
to arrive at the global
minimum, but this

might not be possible.

f(z)

This local minimum performs
poorly and should be avoided.

Gradient Descent: Multivariate Functions

o For functions with multiple inputs, we must make use of the concept of partial
derivatives.
G,

— f(x) measures how f changes as only the variable x;

o The partial derivative

Increases at point x.

o The gradient generalizes the notion of derivative to the case where the derivative

IS with respect to a vector
» the gradient of f is the vector containing all the partial derivatives, denoted V,.f (x).

of of of

axl ’ axZ S axD

fo(x) — [

o Therefore:
T

0 0 0
x =x—€eVif(x) = [xl — ea—xlf(x), xZ_EO_xzf(x)' v, Xp — eEf(x)

Gradient Descent: Learning Rate

x =x—€eVif(x)

o The learning rate € is a hyperparameter we need to tune:

[/ N Source: Neural Networks and Deep
ot Ix—mf\ Learning course by Jimmy Ba, 2020,
\ \ University of Toronto:
\\‘ ~_/ j https://csc413-2020.github.io/
\MML‘“»-____ |
~_
€ too small: € too large: € much too large:
Slow progress Oscillations

Instability

o Good values are typically between 0.001 and 0.1. You should do a grid search if
you want good performance (i.e. try 0.1, 0.03, 0.01, ...).

Jacobian Matrix

o Sometimes we need to find all the partial derivatives of a function whose input
and output are both vectors.

o The matrix containing all such partial derivatives is known as a Jacobian matrix.

o If we have a function f : R™ — R", then the Jacobian matrix] € R, «,,, of f is
defined such that], ; = %f(x)i.
J

Hessian Matrix

Eigenvectors and Eigenvalues

o For a square matrix A of size M X M, the eigenvector equation 1s defined by

Aui =)Liui i=1,..,M
u;: Eigenvector A;: Eigenvalue

o Characteristic Equation:

o Example: ; el A
ur =[] 4 =4 zz .
2 3 | w 1!
A - [2 1 h 1 } .2: :?_:__1' E —t—t—t ir —t } uu ; .'l
up =[] = i 2 T N,

Hessian Matrix

Eigenvectors and Eigenvalues

o For most applications we normalize the eigenvectors (i.e., transform them such that
their length 1s equal to one)

wu, =1

o To normalize, we simply divide u; by its length |u;|

Normalized eigenvectors
. =43%+ 22 =+13
o Example: - [3] . lu| o 3/V13 _ [0.8331
1= 21" ™ —— Y7 2/v13] T 10,5547
2 3
A= =
=4—-12+ 12 =+/2
[2 1 4 luz| \/ V2 h = —1/4/2 _ [—0.7071
\u2=[1],/11=—1— 2 1/\/5 0.7071

Hessian Matrix

Eigenvectors and Eigenvalues

o We can re-write the eigenvector equation in matrix form:

Eigen Decomposition A — UAU_1

Matrix Form
Au; = A;u; ‘ AU = UA
- u-tAau=A

Diagonalization

T ™ 2)

Hessian Matrix

Eigenvectors and Eigenvalues

o If A 1s a real symmetric matrix, then its eigenvalues are real and can be chosen to form
orthonormal set, so that

il = 0 ,otherwise
o Or (@ \
UTu=1 = Uuvlyul=u1l1=uy"

. {1 Jifi =

o Then

Eigen Decomposition

A = UAU1 = yaUT
AU = UA
U lAU =UTAU = A

Diagonalization

Hessian Matrix

o When f has multiple input dimensions, there are many second derivatives. These
derivatives can be collected together into a matrix called the Hessian matrix.

2
H =
(f)(x); 0xi6xjf(x)
(oL
0x? dx,0xp
H=| : - s
9 2 f
\axDaxl 0x5 /
9°f 0%f

o His symmetric because 20,06, ~ 20,00,

Hessian Matrix

o Because the Hessian matrix is real and symmetric, we can decompose it into a set
of real eigenvalues and an orthogonal basis of eigenvectors.

H = UAU 1 = yAUT
U IHU =UTHU = A

o The second derivative in a specific direction represented by a unit vector d is given
by dTHd.
« When d is an eigenvector of H , the second derivative in that direction is given by the
corresponding eigenvalue.
. For other directions of d , the directional second derivative is a weighted average of all the
eigenvalues, with weights between 0 and 1, and eigenvectors that have a smaller angle with d
receiving more weight.

Hessian Matrix

Note: Second order approximation of function f(x) around point a:

1
fO) = f@)+f (@& - a) + 5 f' (@ - a)*

o We can make a second-order Taylor series approximation to the function f (x)
around the current point x(°) (g: gradient, H: hessian):

1
f(x) = f(x@) + (x - x(o))Tg +5 (x— x(o))TH(x — x(0)
o Using gradient descent method, If we use a learning rate of €, then the new point x
will be given by x(®) — ¢g.
f(x©@ —eg) ~ F(x©@) + (2 — eg — x©) g + % (x© — eg — @) H(x©@ — eg — x(©)

1
= f(x1?) —eg"g +5e?g"Hg

Hessian Matrix

1
f(x® —eg) = f(x) —eg"g + 5 €*g"Hy

o We can think of the H as measuring curvature.

O Negative curvature: the cost fu nCtion Negative curvature No curvature Positive curvature
decreases faster than the gradient
predicts.

f(z)

o No curvature: the gradient predicts the E =
decrease correctly. \ \

o Positive curvature: the function
decreases more slowly than expected @ @ z

Hessian Matrix

Minimum

Maximum

Saddle point

Remember: \/

/N

Critical Points:

ffx) =0

o Second derivative test:

f'(x) =0and f"(x) >0

f'(x) =0and f"(x) <0

f'(x) =0and f"(x) =0

)

) x is a local minimum
) x is a local maximum

Inconclusive, may be a saddle
point or a part of a flat region

Hessian Matrix

Second derivative test (multiple dimensions):

o Critical points: Vo.f(x) =0

o A matrix A is called positive definite (PD) if its eigenvalues are strictly positive.
o A matrix A is called negative definite (ND) if its eigenvalues are strictly negative.

V.f(x) =0andHisPD) x is a local minimum
V,.f(x) =0and His ND _ x is a local maximum

_ Inconclusive, may be a saddle
Vxf (x) = 0 and H is not PD or ND _ point or a part of a flat region

Example: next slide

Hessian Matrix

£/(x) = 0 and H is not PD or ND — Inconclusive, may be a saddle

point or a part of a flat region

Hessian Matrix

Amax

o The quantity iIs known as the condition number of a matrix A.

Amin

o When the Hessian has a large condition
number (lll-conditioned), gradient descent

performs poorly. H

 This is because in one direction, the derivative
increases rapidly, while in another direction, it
iIncreases slowly.

20

0

T2

—10

—20

o Poor condition number also makes choosing a 30
—o0 —20—310 0 10 20

good step size (e) difficult. =

* The step size must be too small to avoid
overshooting the minimum and going uphill in
directions with strong positive curvature.

Hessian Matrix

o Suppose we have the following dataset for linear regression:

Source: Neural Networks and Deep

X1 X2 t Learning course by Jimmy Ba, 2020,
114.8 0.00323 | 5.1 University of Toronto:
338.1 0.00183 3.2 https://csc413-2020.github.io/

08.8 0.00279 | 4.1

o Which weight, x; or x,, will receive a larger gradient descent update?

Hessian Matrix

o To avoid these problems, it's a good idea to center your inputs to zero mean and
unit variance, especially when they’re in arbitrary units

~ Xj — Hj
Xj ju—
j

Hessian Matrix

o The lll-conditioned issue can be resolved by using information from the Hessian
matrix to guide the search.

o The simplest method for doing so is known as Newton’s method:
x' = x— H(x) 'y f (x)

o Optimization algorithms that use only the gradient, such as gradient descent, are
called first-order optimization algorithms.

o Optimization algorithms that also use the Hessian matrix, such as Newton’s
method, are called second-order optimization algorithms

Convex Optimization

o AsetSis convex, if forany xy,x; € S,

(1-Dxg+Ax, €S, for0<A<1.
o A function f is convex, if for any xy, x; € S,

FIQL = Dxg +Ax1) < (A= Df(xp) + Af (x1), for0 <A< 1.

(z)!
Source: Neural Networks and Deep]
Learning course by Jimmy Ba, 2020,
University of Toronto: (1—A)f(zo) | | 5 e
. . L. T T T e

https://csc413-2020.github.io/ + M (1) : : ;

=Nz | 0 ONC / *

+ Azy) % . .

Convex Optimization

o If a function is convex, any local minimum is also a global minimum.

o This is very convenient for optimization since if we keep going downhill, we’'ll
eventually reach a global minimum.

Optimization for Training Deep Models

o Training multilayer neural nets is non-convex ®®®

o Why?

o Permutation symmetry or weight space symmetry

o Consider that a given network is optimized using parameters W*

o If the loss function was convex, then Loss(W*) would be the global minimum value

o Suppose we exchange the parameters of two nodes in the same layer

o Then the value computed by the network will () () O O
be preserved] \W I ><
o If the function were convex, this value would A WY N G)

have to be larger that Loss(W ™) ><'T — [\W

Optimization for Training Deep Models

o llI-Conditioning problem is very common in neural network training

o lll-conditioning can manifest by causing SGD to get “stuck” in the sense that even
very small steps increase the cost function.

o Therefore, gradient descent often does not arrive at a critical point of any kind

16 1.0] : - -
14 | 2 09 -
12 |- o O.SWV- .
=3 5
- 10 - [uf 07 5 -
= &
- 8} : 0.6 H .
2 6} = 05 H .
s S
{‘; 4} _Jg 0.4 -
2| _;’w; 0:3 L N
ol O 02k al
=)] | |]] o |
—50 0 50 100 150 200 250 0 50 100 150 200 250

Training time (epochs) Training time (epochs)

Optimization for Training Deep Models

o The Central Limit Theorem: Mean of a set of random variables, which 1s of course
itself a random variable, has a distribution that becomes increasingly Gaussian as the

number of terms 1n the sum increases

3 3 3
N=1 N

2 1 2 21

I} - 1

0 0.5 I 0 0.5 1 0 0.5 1

import numpy as np

from matplotlib import pyplot as plt

N = int(input())

means = []

for i in range(1,100000)
means.append(np.mean(np.random.random(size=(N,))))

N =10

I
b

plt.hist(means,bins = 100, range=(9,1))

Optimization for Training Deep Models

o The Central Limit Theorem: Mean of a set of random variables, which 1s of course

itself a random variable, has a distribution that becomes increasingly Gaussian as the
number of terms in the sum increases

3 3 3
N=1 N=2 N =10
2 L 4 2 2 L
| IIIIIIIIIIIIIIIIIIII | |
0 0 0
0 0.5 1 0 0.5 | 0 0.5 1

o The standard error of mean: _ _
e The denominator of VN shows that there are less than linear

returns to using more examples to estimate the mean.

SE(fiy) = |Var —z x; | =— « Compare two hypothetical estimates of the gradient, one based

\ i=1 on 100 examples and another based on 10,000 examples. The
latter requires 100 times more computation than the former but
reduces the standard error of the mean only by a factor of 10

Optimization for Training Deep Models

o In machine learning the objective function usually decomposes as a sum over the
training examples.

N
L(8) ==) 1,(8)

o By linearity , N
VL(®) = NZ V1,(0)
1=

o Computing the gradient requires summing over all of the training examples. This is
known as batch training.

® =0 —eVL(0)

o Batch training is impractical if you have a large dataset (e.g. millions of training
examples)!

Optimization for Training Deep Models

o Stochastic gradient descent (SGD): update the parameters based on the gradient
for a single training example:

® =0 —¢€VL,(0)

o Based on the central limit theorem, if you sample a training example at random, the
stochastic gradient is an unbiased estimate of the batch gradient

Batch gradient descent moves
directly downhill. SGD takes steps in a
noisy direction, but moves downhill
on average.

batch gradient descent stochastic gradient descent

Source: Neural Networks and Deep Learning course by Jimmy Ba, 2020, University of Toronto: https://csc413-2020.github.io/

Optimization for Training Deep Models

o Problem with SGD: if we only look at one training example at a time, we can’t
exploit efficient parallel operations in GPU.

o Compromise approach: compute the gradients on a medium-sized set of training
examples, called a mini-batch.

Algorithm 8.1 Stochastic gradient descent (SGD) update

Require: Learning rate schedule €1, 6,...

Require: Initial parameter 8

E+—1

while stopping criterion not met do
Sample a minibatch of m examples from the training set {m(l), e ,m(m)} with
corresponding targets y (@)
Compute gradient estimate: g < =V > . L(f(2?;0),y?)
Apply update: 8 «+— 0 — €..g
kE+—Fk+1

end while

Source: Goodfellow et al. (2016), Deep Learning

Optimization for Training Deep Models

o Itis necessary to decrease the learning rate over time.

o Sufficient condition for convergence:

]2
f
&

., and

7
I
}—l

]2
?sf/-\t\D
2

7
I
}—l

Optimization for Training Deep Models

Momentum

o When there is high curvature, SGD could be slow.

o The momentum algorithm accumulates an exponentially decaying moving average
of past gradients and continues to move in their direction.

v=av —€eVy (%z li(G))),a € [0,1)
i=1

O=0+v

Optimization for Training Deep Models

Momentum

Algorithm 8.2 Stochastic gradient descent (SGD) with momentum

Require: Learning rate e, momentum parameter «

Require: Initial parameter 6, initial velocity v

while stopping criterion not met do
Sample a minibatch of m examples from the training set {zV), ... ™)} with
corresponding targets y ().
Compute gradient estimate: g <+ %Ve > L(f(x%;8),y").
Compute velocity update: v + av — €g.
Apply update: @ «+— 0 + v.

end while

Source: Goodfellow et al. (2016), Deep Learning

Optimization for Training Deep Models

Momentum

20

10

0

—10

—20

—30
—30 =20 —10 0 10 20

Source: Goodfellow et al. (2016), Deep Learning

Optimization for Training Deep Models

AdaGrad [1]

o Learning rate is reliably one of the most difficult to set hyperparameters because it
significantly affects model performance.

o The main idea in AdaGrad is to use a separate learning rate for each parameter
and automatically adapt these learning rates throughout the course of learning

o The parameters with the largest partial derivative of the loss have a
correspondingly rapid decrease in their learning rate, while parameters with small
partial derivatives have a relatively small decrease in their learning rate.

[1] Duchi, J., Hazan, E. and Singer, Y., 2011. Adaptive subgradient methods for online learning and stochastic optimization. Journal of
machine learning research, 12(7).

Optimization for Training Deep Models

AdaGrad

Algorithm 8.4 The AdaGrad algorithm

Require: Global learning rate ¢
Require: Initial parameter 6
Require: Small constant §, perhaps 10~", for numerical stability
Initialize gradient accumulation variable r = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {33(1), . ,a:(m)} with
corresponding targets y (%).
Compute gradient: g < %V@ S L(f(2®;8),yD).
Accumulate squared gradient: r < r+g ® g.
Compute update: A6 « — _: 7 g (Division and square root applied

element-wise)
Apply update: 68 < 0 + A6.
end while

Optimization for Training Deep Models

RMSProp (Hinton, 2012)

o RMSProp is an extension to AdaGrad that uses an exponentially decaying average
to discard history from the extreme past

Algorithm 8.5 The RMSProp algorithm

Require: Global learning rate e, decay rate p

Require: Initial parameter @

Require: Small constant §, usually 1079, used to stabilize division by small
numbers

Initialize accumulation variables r» = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {:c(l) . ,a:(m)} with
corresponding targets y @),
Compute gradient: g + +Vg >, L(f(x®;0),y®).
Accumulate squared gradient: r < pr + (1 —p)g ® g.

1 , :
Compute parameter update: A@ = — \/;_H. ®g. (\/ﬁ' applied element-wise)

Apply update: 8 < 6 + AB@.
end while

Optimization for Training Deep Models

Adam = RMSProp + Momentum

[1] Kingma, D.P. and Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Optimization for Training Deep Models

Animation of 5 gradient descent
methods on a surface:

o gradient descent (cyan),

o momentum (magenta),

o AdaGrad (white),

o RMSProp (green),

o Adam (blue).

o Left: global minimum;

o Right: local minimum.

Convolutional Neural Networks

