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Today …

o Intro to Optimization

o Gradient Descent 

o Hessian Matrix

o Convex Optimization

o Optimization For Deep Learning



Recall … 

Step 1: Loss function 

𝐗 = 𝒙𝟏, 𝒙𝟐, … , 𝒙𝑵
𝑻

𝐲 = 𝑦1, 𝑦2, … , 𝑦𝑁
𝑻

𝐱𝐢 = 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛
𝑻

Training data 
𝑁: num of data
𝑛: dimension of each data point

𝑙𝑖 = 𝑦𝑖 − 𝑜𝑖
2 = 𝑦𝑖 − 𝜑 𝒘𝑇𝒙𝑖

2

𝐿 =෍

𝑖=1

𝑁

𝑙𝑖

Step 2: The objective function 

arg min
𝑤1,𝑤2,𝑤3

𝐿

Step 3: Optimization 

Initialize 𝑤𝑖𝑗
𝑘

for 𝑖𝑡𝑒𝑟 = 1 to 𝐾:
for each i, 𝑗, 𝑘: 

𝑤𝑖𝑗
𝑘

𝑛𝑒𝑤
= 𝑤𝑖𝑗

𝑘

𝑜𝑙𝑑
− 𝛾

𝜕𝐿

𝜕𝑤𝑖𝑗
𝑘

𝑜𝑖

𝑤1 𝑤2
𝑤3

How to calculate L and 

how to update𝑤𝑖𝑗
𝑘?



Intro to Optimization 

o Optimization refers to the task of either minimizing or maximizing some function

𝑓(𝑥) by altering 𝑥.

o We usually phrase most optimization problems in terms of minimizing 𝑓(𝑥).
• Maximization may be accomplished via a minimization algorithm by minimizing −𝑓(𝑥). 

o The function we want to minimize or maximize is called the objective function , or

criterion.
• When we are minimizing it, we may also call it the cost function , loss function, or error function.

o We often denote the value that minimizes or maximizes a function with a

superscript ∗. For example, we might say 𝑥∗ = argmin 𝑓(𝑥).

o The derivative 𝑓′ 𝑥 gives the slope of 𝑓(𝑥) at the point 𝑥
• It specifies how to scale a small change in the input to obtain the corresponding change in the

output: 𝑓(𝑥 + 𝜖) ≈ 𝑓(𝑥) + 𝜖𝑓′(𝑥).
• Therefore, it is useful for minimizing a function because it tells us how to change 𝑥 in order to

make a small improvement in 𝑦.



Gradient Descent

o We can reduce 𝑓(𝑥) by moving 𝑥 in small steps with the opposite sign of the

derivative.
• This technique is called gradient descent (Cauchy, 1847).



Gradient Descent: Critical Points

o When 𝑓′ 𝑥 = 0, the derivative provides no information about which direction to

move.

o Points where 𝑓 ′(𝑥) = 0 are known as critical points, or stationary points.



Gradient Descent: Approximate Minimization

o Approximate minimization: Optimization algorithms may fail to find a global

minimum when there are multiple local minima or plateaus present.

o In the context of deep learning, we generally accept such solutions even though

they are not truly minimal



Gradient Descent: Multivariate Functions 

o For functions with multiple inputs, we must make use of the concept of partial

derivatives.

o The gradient generalizes the notion of derivative to the case where the derivative

is with respect to a vector
• the gradient of f is the vector containing all the partial derivatives, denoted ∇𝒙𝑓(𝒙).

o The partial derivative
𝜕

𝜕𝑥𝑖
𝑓(𝒙) measures how 𝑓 changes as only the variable 𝑥𝑖

increases at point 𝒙.

∇𝒙𝑓 𝒙 =
𝜕𝑓

𝜕𝑥1
,
𝜕𝑓

𝜕𝑥2
, … ,

𝜕𝑓

𝜕𝑥𝐷

𝑇

o Therefore:

𝒙′ = 𝒙 − 𝜖∇𝐱𝑓 𝒙 = 𝑥1 − 𝜖
𝜕

𝜕𝑥1
𝑓 𝒙 , 𝑥2−𝜖

𝜕

𝜕𝑥2
𝑓 𝒙 ,… , 𝑥𝐷 − 𝜖

𝜕

𝜕𝑥𝐷
𝑓 𝒙

𝑻



Gradient Descent: Learning Rate

o The learning rate 𝜖 is a hyperparameter we need to tune:

o Good values are typically between 0.001 and 0.1. You should do a grid search if

you want good performance (i.e. try 0.1, 0.03, 0.01, …).

𝒙′ = 𝒙 − 𝜖∇𝐱𝑓(𝒙)

Source: Neural Networks and Deep 
Learning course by Jimmy Ba, 2020, 
University of Toronto: 
https://csc413-2020.github.io/

𝜖 too small: 
Slow progress 

𝜖 too large: 
Oscillations 

𝜖 much too large: 
Instability 



Jacobian Matrix

o Sometimes we need to find all the partial derivatives of a function whose input

and output are both vectors. 

o The matrix containing all such partial derivatives is known as a Jacobian matrix.  

o If we have a function 𝒇 ∶ ℝ𝑚 → ℝ𝑛, then the Jacobian matrix 𝐉 ∈ ℝ𝑛×𝑚 of 𝒇 is 

defined such that 𝐉𝑖,𝑗 =
𝜕

𝜕𝑥𝑗
𝒇 𝒙 𝑖.    



Eigenvectors and Eigenvalues

o For a square matrix 𝐀 of size𝑀 ×𝑀, the eigenvector equation is defined by

𝐀𝐮i = 𝜆𝑖𝒖𝒊 , 𝑖 = 1, … ,𝑀

𝑢𝑖: Eigenvector 𝜆𝑖: Eigenvalue

o Characteristic Equation:

𝐀 − 𝜆𝑖𝐈 = 0

o Example:

𝐀 =
2 3
2 1

𝐮𝟏 =
3
2
, 𝜆1 = 4

𝐮𝟐 =
−1
1

, 𝜆1 = −1

Hessian Matrix



Eigenvectors and Eigenvalues

o For most applications we normalize the eigenvectors (i.e., transform them such that

their length is equal to one)

𝐮𝑖𝐮𝑖
𝑇 = 1

o Example:

𝐀 =
2 3
2 1

𝐮𝟏 =
3
2
, 𝜆1 = 4

𝐮𝟐 =
−1
1

, 𝜆1 = −1

o To normalize, we simply divide 𝐮𝑖 by its length 𝐮𝑖

Normalized eigenvectors
|𝐮𝟏| = 32 + 22 = 13

|𝐮𝟐| = −12 + 12 = 2

𝐮𝟏 =
3/ 13

2/ 13
=

0.8331
0.5547

𝐮𝟐 =
−1/ 2

1/ 2
=

−0.7071
0.7071

Hessian Matrix



Eigenvectors and Eigenvalues

o We can re-write the eigenvector equation in matrix form:

𝐀𝐮i = 𝜆𝑖𝒖𝒊 𝐀𝐔 = 𝐔𝚲

𝐔 = 𝐮1 𝐮𝑀… 𝚲 =

𝜆1

𝜆𝑀

Matrix Form
𝐀 = 𝐔𝚲𝐔−𝟏Eigen Decomposition 

Diagonalization 
𝐔−𝟏𝐀𝐔 = 𝚲

Hessian Matrix



Eigenvectors and Eigenvalues

o If 𝐀 is a real symmetric matrix, then its eigenvalues are real and can be chosen to form
orthonormal set, so that

𝐮𝑖
𝑇𝐮𝑗 = ቊ

1 , if 𝑖 = 𝑗
0 , otherwise

o Or

𝐔𝑇𝐔 = 𝐈 ⇒ 𝐔T𝐔𝐔−1 = 𝐔−1 = 𝐔T

o Then

☺

𝐀𝐔 = 𝐔𝚲
𝐀 = 𝐔𝚲𝐔−𝟏 = 𝐔𝚲𝐔𝐓Eigen Decomposition 

Diagonalization 
𝐔−𝟏𝐀𝐔 = 𝐔𝐓𝐀𝐔 = 𝚲

Hessian Matrix



Hessian Matrix

o When 𝑓 has multiple input dimensions, there are many second derivatives. These 
derivatives can be collected together into a matrix called the Hessian matrix. 

𝑯 𝑓 𝒙 𝑖,𝑗 =
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑓(𝒙)

o H is symmetric because 
𝜕2𝑓

𝜕𝜃𝑖𝜕𝜃𝑗
=

𝜕2𝑓

𝜕𝜃𝑗𝜕𝜃𝑖

𝑯 =

𝜕2𝑓

𝜕𝑥1
2 ⋯

𝜕2𝑓

𝜕𝑥1𝜕𝑥𝐷
⋮ ⋱ ⋮

𝜕2𝑓

𝜕𝑥𝐷𝜕𝑥1
⋯

𝜕2𝑓

𝜕𝑥𝐷
2



Hessian Matrix

o Because the Hessian matrix is real and symmetric, we can decompose it into a set 

of real eigenvalues and an orthogonal basis of eigenvectors.  

o The second derivative in a specific direction represented by a unit vector d is given 

by dT𝐇d.
• When 𝑑 is an eigenvector of H , the second derivative in that direction is given by the 

corresponding eigenvalue.

• For other directions of 𝑑 , the directional second derivative is a weighted average of all the 

eigenvalues, with weights between 0 and 1, and eigenvectors that have a smaller angle with d 

receiving more weight. 

𝐇 = 𝐔𝚲𝐔−𝟏 = 𝐔𝚲𝐔𝐓

𝐔−𝟏𝐇𝐔 = 𝐔𝐓𝐇𝐔 = 𝚲



Hessian Matrix

o We can make a second-order Taylor series approximation to the function 𝑓(𝑥)
around the current point 𝑥(0) (𝒈: gradient, 𝑯: hessian):  

o Using gradient descent method, If we use a learning rate of 𝜖, then the new point 𝒙

will be given by 𝒙 0 − 𝜖𝒈. 

𝑓 𝒙 ≈ 𝑓 𝒙 0 + 𝒙 − 𝒙 0 𝑇
𝒈 +

1

2
𝒙 − 𝒙 0 𝑇

𝐇 𝒙 − 𝒙 0

𝑓 𝑥 ≈ 𝑓 𝑎 + 𝑓′ 𝑎 𝑥 − 𝑎 +
1

2
𝑓"(𝑎) 𝑥 − 𝑎 2

Note: Second order approximation of function 𝑓(𝑥) around point 𝑎: 

𝑓 𝒙 0 − 𝜖𝒈 ≈ 𝑓 𝒙 0 + 𝒙 0 − 𝜖𝒈 − 𝒙 0 𝑇
𝒈+

1

2
𝒙 0 − 𝜖𝒈 − 𝒙 0 𝑇

𝐇 𝒙 0 − 𝜖𝒈 − 𝒙 0

= 𝑓 𝒙 0 − 𝜖𝒈𝑇𝒈+
1

2
𝜖2𝒈T𝐇𝒈



Hessian Matrix

o We can think of the 𝐇 as measuring curvature.

𝑓 𝒙 0 − 𝜖𝒈 ≈ 𝑓 𝒙 0 − 𝜖𝒈𝑇𝒈+
1

2
𝜖2𝒈T𝐇𝒈

o Negative curvature: the cost function 

decreases faster than the gradient 

predicts.

o No curvature: the gradient predicts the 

decrease correctly. 

o Positive curvature: the function 

decreases more slowly than expected



Hessian Matrix

o Second derivative test: 

Remember: 
Critical Points:

𝑓′ 𝑥 = 0

f ′ x = 0 and f"(x) > 0 𝑥 is a local minimum

f ′ x = 0 and f"(x) < 0 𝑥 is a local maximum

f ′ x = 0 and f"(x) = 0
Inconclusive, may be a saddle 

point or a part of a flat region 



Hessian Matrix

o Critical points: 

Second derivative test (multiple dimensions): 

∇𝒙𝑓 𝒙 = 𝟎

o A matrix 𝐀 is called positive definite (PD) if its eigenvalues are strictly positive.

o A matrix 𝐀 is called negative definite (ND) if its eigenvalues are strictly negative.

∇𝒙𝑓 𝒙 = 𝟎 and 𝐇 is PD 𝑥 is a local minimum

∇𝒙𝑓 𝒙 = 𝟎 and 𝐇 is ND 𝑥 is a local maximum

∇𝒙𝑓 𝒙 = 𝟎 and 𝐇 is not PD or ND
Inconclusive, may be a saddle 

point or a part of a flat region 
Example: next slide



Hessian Matrix

𝑓′ 𝒙 = 𝟎 and 𝐇 is not PD or ND
Inconclusive, may be a saddle 

point or a part of a flat region 



Hessian Matrix

o The quantity 
𝜆max

𝜆min
is known as the condition number of a matrix 𝐀.

o When the Hessian has a large condition 

number (Ill-conditioned), gradient descent 

performs poorly. 
• This is because in one direction, the derivative 

increases rapidly, while in another direction, it 

increases slowly. 

o Poor condition number also makes choosing a 

good step size (𝜖) difficult.

• The step size must be too small to avoid 

overshooting the minimum and going uphill in 

directions with strong positive curvature. 



Hessian Matrix

o Suppose we have the following dataset for linear regression: 

o Which weight, 𝑥1 or 𝑥2, will receive a larger gradient descent update?  

Source: Neural Networks and Deep 
Learning course by Jimmy Ba, 2020, 
University of Toronto: 
https://csc413-2020.github.io/



Hessian Matrix

o To avoid these problems, it’s a good idea to center your inputs to zero mean and 

unit variance, especially when they’re in arbitrary units  

ො𝑥𝑗 =
𝑥𝑗 − 𝜇𝑗
𝜎𝑗



Hessian Matrix

o The Ill-conditioned issue can be resolved by using information from the Hessian 

matrix to guide the search.   

o The simplest method for doing so is known as Newton’s method:

𝒙′ = 𝒙 −𝑯 𝑥 −1∇𝐱𝑓(𝒙)

o Optimization algorithms that use only the gradient, such as gradient descent, are

called first-order optimization algorithms.

o Optimization algorithms that also use the Hessian matrix, such as Newton’s

method, are called second-order optimization algorithms



Convex Optimization 

o A set 𝑆 is convex, if for any 𝑥0, 𝑥1 ∈ 𝑆, 

1 − 𝜆 𝑥0 + 𝜆𝑥1 ∈ 𝑆, for 0 ≤ 𝜆 ≤ 1.

o A function 𝑓 is convex, if for any 𝑥0, 𝑥1 ∈ 𝑆, 

𝑓 1 − 𝜆 𝑥0 + 𝜆𝑥1 ≤ 1 − 𝜆 𝑓 𝑥0 + 𝜆𝑓 𝑥1 , for 0 ≤ 𝜆 ≤ 1.

Source: Neural Networks and Deep 
Learning course by Jimmy Ba, 2020, 
University of Toronto: 
https://csc413-2020.github.io/



Convex Optimization 

o If a function is convex, any local minimum is also a global minimum. 

o This is very convenient for optimization since if we keep going downhill, we’ll 

eventually reach a global minimum. 



Optimization for Training Deep Models

o Training multilayer neural nets is non-convex   

o Why? 

o Permutation symmetry or weight space symmetry  

o Consider that a given network is optimized using parameters 𝑊∗

o If the loss function was convex, then Loss 𝑊∗ would be the global minimum value

o Suppose we exchange the parameters of two nodes in the same layer

o Then the value computed by the network will

be preserved

o If the function were convex, this value would 

have to be larger that Loss(𝑊∗)



Optimization for Training Deep Models

o Ill-Conditioning problem is very common in neural network training 

o Ill-conditioning can manifest by causing SGD to get “stuck” in the sense that even 

very small steps increase the cost function. 

o Therefore, gradient descent often does not arrive at a critical point of any kind 



o The Central Limit Theorem: Mean of a set of random variables, which is of course

itself a random variable, has a distribution that becomes increasingly Gaussian as the

number of terms in the sum increases

Optimization for Training Deep Models



o The Central Limit Theorem: Mean of a set of random variables, which is of course

itself a random variable, has a distribution that becomes increasingly Gaussian as the

number of terms in the sum increases

Optimization for Training Deep Models

o The standard error of mean:

𝑆𝐸 Ƹ𝜇𝑁 = 𝑉𝑎𝑟
1

𝑁
෍

𝑖=1

𝑁

𝑥𝑖 =
𝜎

𝑁

• The denominator of 𝑁 shows that there are less than linear
returns to using more examples to estimate the mean.

• Compare two hypothetical estimates of the gradient, one based
on 100 examples and another based on 10,000 examples. The
latter requires 100 times more computation than the former but
reduces the standard error of the mean only by a factor of 10



Optimization for Training Deep Models

o In machine learning the objective function usually decomposes as a sum over the 

training examples.  

𝐿 𝚯 =
1

𝑁
෍

𝑖=1

𝑁

𝑙𝑖 𝚯

o By linearity 

∇𝐿 𝚯 =
1

𝑁
෍

𝑖=1

𝑁

∇𝑙𝑖 𝚯

o Computing the gradient requires summing over all of the training examples. This is 

known as batch training. 

o Batch training is impractical if you have a large dataset (e.g. millions of training 

examples)! 

𝚯 = 𝚯 − 𝜖∇𝐿 𝚯



Optimization for Training Deep Models

o Stochastic gradient descent (SGD): update the parameters based on the gradient 

for a single training example:   

o Based on the central limit theorem, if you sample a training example at random, the

stochastic gradient is an unbiased estimate of the batch gradient 

𝚯 = 𝚯 − 𝜖∇𝐿𝑖 𝚯

Batch gradient descent moves
directly downhill. SGD takes steps in a
noisy direction, but moves downhill
on average.

Source: Neural Networks and Deep Learning course by Jimmy Ba, 2020, University of Toronto: https://csc413-2020.github.io/



Optimization for Training Deep Models

o Problem with SGD: if we only look at one training example at a time, we can’t

exploit efficient parallel operations in GPU. 

o Compromise approach: compute the gradients on a medium-sized set of training 

examples, called a mini-batch.  

Source: Goodfellow et al. (2016), Deep Learning



Optimization for Training Deep Models

o It is necessary to decrease the learning rate over time.

o Sufficient condition for convergence:



Optimization for Training Deep Models

Momentum

o When there is high curvature, SGD could be slow. 

𝒗 = 𝛼𝒗 − 𝜖∇𝚯
1

𝑚
෍

𝑖=1

𝑚

𝑙𝑖 𝚯 , 𝛼 ∈ 0,1

𝚯 = 𝚯 + 𝒗

o The momentum algorithm accumulates an exponentially decaying moving average 

of past gradients and continues to move in their direction.



Optimization for Training Deep Models

Momentum

Source: Goodfellow et al. (2016), Deep Learning



Optimization for Training Deep Models

Momentum

Source: Goodfellow et al. (2016), Deep Learning



Optimization for Training Deep Models

AdaGrad [1] 

o Learning rate is reliably one of the most difficult to set hyperparameters because it 

significantly affects model performance. 

o The main idea in AdaGrad is to use a separate learning rate for each parameter 

and automatically adapt these learning rates throughout the course of learning 

o The parameters with the largest partial derivative of the loss have a 

correspondingly rapid decrease in their learning rate, while parameters with small 

partial derivatives have a relatively small decrease in their learning rate. 

[1] Duchi, J., Hazan, E. and Singer, Y., 2011. Adaptive subgradient methods for online learning and stochastic optimization. Journal of 
machine learning research, 12(7).



Optimization for Training Deep Models

AdaGrad



Optimization for Training Deep Models

RMSProp (Hinton, 2012) 

o RMSProp is an extension to AdaGrad that uses an exponentially decaying average 

to discard history from the extreme past 



Optimization for Training Deep Models

Adam [1]

Adam = RMSProp + Momentum

[1] Kingma, D.P. and Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.



Optimization for Training Deep Models

Animation of 5 gradient descent 
methods on a surface:
o gradient descent (cyan),
o momentum (magenta),
o AdaGrad (white),
o RMSProp (green),
o Adam (blue).
o Left: global minimum; 
o Right: local minimum.



Next … 

Convolutional Neural Networks


