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Introduction

o Recurrent neural networks (RNNs), are a family of neural networks for processing

sequential data.

o Examples:

• Speech-to-text and text-to-speech

• Machine translation

• Action recognition in video data

o We show the sequential data as 𝒙 1 , 𝒙(2), … , 𝒙 𝜏 , where 𝒙 𝑡 , 𝑡 ∈ 1,2,… , 𝜏 ,
represents the input at time instance 𝑡



Introduction

o An MLP layer vs an RNN layer
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Introduction

o We can think of an RNN as a neural network with hidden units which feed into

themselves (self-loops).
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o We can unfold the RNN’s graph by explicitly representing the units at all time

steps.

o The weights are shared between all time steps
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Unfolding
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Unfolding

o A simple example: an RNN to sum its inputs
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Example from Neural Networks and Deep Learning course by Jimmy Ba, 2020, University of Toronto: https://csc413-2020.github.io/



Unfolding

o An other example: an RNN that determines if the total values of the first or second

input are larger

Example from Neural Networks and Deep Learning course by Jimmy Ba, 2020, University of Toronto: https://csc413-2020.github.io/

Logistic Function: 

𝐿 𝑧 =
1

1 + 𝑒−𝑧



RNN: Sequence Processing Types

One to Many

Example: Image captioning

Image => sequence of words

Source: Hossain, M.Z., Sohel, F., Shiratuddin, M.F. and Laga, H., 2019. A comprehensive survey 
of deep learning for image captioning. ACM Computing Surveys (CsUR), 51(6), pp.1-36.



RNN: Sequence Processing Types

Many to One

Example: Sentiment Classification

Sequence of words => Sentiment

Source:  https://monkeylearn.com/sentiment-analysis/



RNN: Sequence Processing Types

Many to Many

Example: Machine Translation, Language Model

Sequence of words => Sequence of words
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RNN: Training



RNN: The Problem of Long-Term Dependencies
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o As stated, RNNs are able to connect previous information to the present task

o Simple RNNs work well when the gap between the relevant information is small



RNN: The Problem of Long-Term Dependencies

o As stated, RNNs are able to connect previous information to the present task

o Simple RNNs work well when the gap between the relevant information is small

o Example:

If we are trying to predict the last word in 
“the clouds are in the …,” we don’t need 
any further context – it’s pretty obvious 
the next word is going to be sky.

Source:  https://colah.github.io/posts/2015-08-Understanding-LSTMs/



RNN: The Problem of Long-Term Dependencies

o Unfortunately, as that gap grows, RNNs become unable to learn to connect the

information.
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RNN: The Problem of Long-Term Dependencies

o Unfortunately, as that gap grows, RNNs become unable to learn to connect the

information.

o Example:

If we are trying to predict the last word in “I live in Iran, a
beautiful country in the middle east. My country has a
population of eighty millions and its official language is …,”
Recent information suggests that the next word is probably the
name of a language, but if we want to narrow down which
language, we need the context of Iran, from further back.



Long Short Term Memory

o Long Short Term Memory (LSTM) networks are a special kind of RNN, capable of

learning long-term dependencies.



Long Short Term Memory
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Long Short Term Memory

o The key to LSTMs is the cell state (𝐶𝑡)



Long Short Term Memory

o Forget Gate Layer

𝒇𝒕

𝒇𝑡 = 𝝈 𝑾𝑓 𝒉𝑡−1, 𝒙𝑡

𝒇𝑡 = ത1 represents “completely keep 
𝑪𝑡−1” while a 𝒇𝑡 = ത0 represents 
“completely forget 𝑪𝑡−1.”



Long Short Term Memory

o Input Gate Layer: what new information we’re going to store in the cell state

𝒊𝒕

𝒊𝑡 = 𝝈 𝑾𝑖 𝒉𝑡−1, 𝒙𝑡

෩𝑪𝒕

෩𝑪𝑡 = 𝝈 𝑾𝐶 𝒉𝑡−1, 𝒙𝑡



Long Short Term Memory

𝑪𝑡 = 𝒇𝑡 ∗ 𝑪𝑡−1 + 𝒊𝑡 ∗ ෩𝑪𝑡



Long Short Term Memory

𝒉𝑡 = 𝝈 𝑾𝑜 𝒉𝑡−1, 𝒙𝑡 ∗ tanh 𝑪𝑡

o Output Gate Layer
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