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Remember: Algorithms that Can Learn




Remember: Supervised Learning

o Suppose that we are given a training set comprising N observations of random variable x
training set) :
( g sel) X = (X1,Xg, ..., Xy)"

o Moreover, for each observation x; we are given a target value t; (training target):

t= (tl! tz, . tN)T
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Remember: Polynomial Curve Fitting

o X = {X1,X5, ..., xy} IS generated uniformaly in [0,1].
o t={t;|t; =sin(2nx) + N (0,0.3),i=1,2,...,N}

o The generating function in not known and the aim is

to estimate it such that: 05
O The estimated function should describe the training data 1.0 1
O The estimated function should generalize to new data

o In particular, we shall fit the data using a polynomial 15
function of the form Lo
y(X; W) = wy + wiX + wyox? + -+ + wy,xM -

d M: the order of polynomial
d w = [wy, Wy, ..., Wy ]: The model parameters (unknown in
advance)

o y(x,w) is a linear function of the coefficients w.
Such functions are called linear models.
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Remember: Polynomial Curve Fitting

o An error function (loss function) is required to measure the misfit between the function

y(x,w), for any given w, and the training data points. 1 ot
L o /
_ = _ 2
E(W) — > E{y(xn; W) tn} " y(z,, W)
n=1 /

o E(w) is a quadratic function of w, / |

OE . .. .
o Therefore P IS linear in the elements of w, and so the

minimization of the error function has a unique
solution, which can be found in closed form.




Linear Basis Function Models



Linear Basis Function Models

o Linear Regression

M-1
Y wW) = wo+ ) Wi (%)
=1

o Functions ¢;(x) are known as basis functions

o The parameter w, allows for any fixed offset in the data and is sometimes called a bias
parameter

o Itis often convenient to define an additional dummy basis function ¢y(x) = 1 so that

M-1
W) = ) Wi () = wTp(x)
j=0
o W= Wy, Wy, ., Wy—1)!

¢ = (¢o»¢1»---»¢M—1)T



Linear Basis Function Models

o Variant of basis functions:

d ¢;(x) = x (also linear with respect to x)
= Limitation: unable to model non-linear data

Q ¢;(x) = x) (polynomial)

= Limitation: polynomial basis functions are global functions of the input variable, so that changes in one
region of input space affect all other regions.

= This can be resolved by dividing the input space up into regions and fit a different polynomial in each
region, leading to spline functions

Q¢;(x) = exp{ & ”’) }(Gaussian basis function)

d (P](X)—O'(

) where o(a) = (Sigmoidal basis function)

1+exp(—a)

o The analysis here is independent of the particular choice of basis function set ©



Maximum likelihood and least squares

o Remember:

d x = {xq,x,, ..., xy} is generated uniformly in [0,1]. 05 |
dt= {til t; = SiH(ZTL'.X') + N(0,03) ,i=1,2, ,N} 0.0 -

1.0 1

o Assume that the target variable t is given by a -
deterministic function y(x, w) with additive Gaussian ~ ° 2 et oees
noise so that

t=yXx,w)+e¢€ R

d € 1s a zero mean Gaussian random variable with
precision f3.

J Thus

p(tlx, w, ) = N (tly(x,w), ™)

Y



Maximum likelihood and least squares

M—1
p(tlx,w,B) = N(t|y(x,w), 1) y(x,w) = z wi;(x) = wi(x)
7=0

o Consider a data set of Inputs X = {xq,...,Xy} With corresponding target values t
— {tll e tN}

o Assuming that the data points are Iid, the likelihood function is expressed as:

N N N
piXwp) = | [pttalxnw.p) = | [Malynw, s =] [wcawmoe, 571
n=1 n=1 n=1

o Note: in supervised learning problems (such as regression and classification), we are not
seeking to model the distribution of the input variables.

o X will always appear in the set of conditioning variables,
o we will drop the x from expressions such as p(t|x, w, §) in order to keep the notation uncluttered.



Maximum likelihood and least squares

N
ptiw,f) = | [V (talw o), 671
n=1

o Taking the logarithm of the likelihood function, and making use of the standard form for the
univariate Gaussian, we have

N / N
N N 1
lnp(tlw; ,8) = Z lnN(tn|WT¢(Xn); ,8_1) = 31n,8 - gln(Zn) - p E E{tn - WT¢(Xn)}2 )
n=1

\ n=1
Remember: Sum of
01 t|w,
o Therefore np; w.B) _ 0 Squares Error (Ep(w))
w

Wy, = arg maxInp(tlw, §) —) = (07TP) DTt

o ®: The Design Matrix
o (d)Td))_ld)Tt: The Normal Equation for the least square problems

: o (CDTCI))_ld)T: The Moore-Penrose pseudo-inverse (a generalization of the
do(xn) O1(xn) o drr—1(xn) of matrix inverse to nonsquare matrices)

¢[J(X1) (251(3(1) ¢5M—1(X1)

B Qb[J(Xz) Qsl(XZ) ¢M—'1(X2)



Sequential Learning

wi = (®T®) &7t

Maximum likelihood method Is a batch technique, which involves processing the entire
training set in one go.

o Then, it can be computationally costly for large data sets.

o If the data set is sufficiently large, it may be worthwhile to use sequential algorithms, also
known as on-line algorithms

o The most well-known sequential learning technique Is stochastic gradient descent (also
known as sequential gradient descent)

o If the error function comprises a sum over data points E = )., E,,, then after presentation of
pattern n, the stochastic gradient descent algorithm updates the parameter vector w using

(T+1) _ ,,(T) _ Q 7: The iteration number
w =W VE )
MVEn o n: The learning rate parameter

Q The value of w is initialized to some starting vector w(®



Sequential Learning

N
1
W(T+1) — W(T) — TIVETL 5 Z{tn — WT¢(Xn)}2
n=1

o For the case of the sum-of-squares error function, this gives

w(TtD — () _ r](tn — WT¢(Xn)¢(Xn)

O This is known as least-mean-squares or the LMS algorithm.



Sequential Learning

w(™D = (@ _ pvE,

o The value of n needs to be chosen with care to ensure that the algorithm converges

O Very large learning rate: the algorithm diverges (left figure)

O Very small learning rate: the algorithm takes long time to converge (middle figure)
O Best: the learning step size is proportional to the slope of the cost function, so the steps gradually get

smaller as the parameters approach the minimum (right figure)

]
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Figures from hands—on machine learning (Aurelien Géron)
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Regularized Least Squares

o Remember: We introduced the idea of regularization to
control overfitting.

o In regularization technique, the total error function to be
minimized takes the form

Ep,(w) + AE, (W) -1}
o The reqgularization term takes the following general 0 ., |
form: ,
M M=0 M=1 M=6 M =9
1 q w; 0.19 0.82 0.31 0.35
— . wy -1.27 7.99 232.37
Ey (W) 2 EHWJ” w% -25.43 -5321.83
j=1 w3 17.37 48568.31
w} -231639.30
— . wE 640042.26
O g = 1(lasso): generally results sparse models s 1061800.53
Q g =2: (weight decay in machine learing literature and I o
parameter shrinkage in statistics): encourages weight values to w 125201.43

decay towards zero generally results sparse models



Multiple Outputs

o We have considered the case of a single target variable t.

o In some applications, we may wish to predict K > 1 target variables, which we denote
collectively by the target vector t.

o Two approaches can be used for this problem:

O Introducing a different set of basis functions for each component of t, leading to multiple, independent
regression problems.

O Using the same set of basis functions to model all of the components of the target vector (this is a more interesting

approach) 1
$1

o For the case of second approach: V1 Wor Wi . Wi

Y2 Woz Wiz W2

— wT :
y (X, W) =W ¢(X)

Yk Wok Wik WumK

O y: a K-dimensional column vector bur
d W:an M X K matrix of parameters y wt

Q ¢(x): an M-dimensional column vector with ¢

elements ¢;(x), with ¢(x) = 1



Multiple Outputs

o Suppose we take the conditional distribution of the target vector to be an isotropic

Gaussian of the form
p(tIx, W, B) = N (t|WT¢p(x), 571 1[4 s - o

o If we have a set of observations t, ..., ty, we can combine

these into a matrix T of size N x K such that the n™® row is B
given by tl. Similarly, we can combine the input vectors X
X4, ..., Xy INto @ matrix X. 6 o . o
] ] ] ] ] € |t tyy .ty
o The log likelihood function is then given by -
y Ey | tve thvz o tak
Inp(TIX, W, B) = z IV (WS B7D inp(TIX, W, 8) 0 T
n=1 =

N
NK _ -1
=5 1n<—2ﬁn)—§§ [tn - WTp (o) _ Wi = (@7®) @™



The Bias-Variance Decomposition



The Bias-Variance Decomposition

o Suppose we model the function h(x) using a parametric function y(x, w) governed by a
parameter vector w

o For any given data set D, we can run our learning algorithm and obtain a prediction
function y(x; D)

o The squared loss of the prediction takes the form

{y(x; D) — h(x)}*
o Suppose we have a large number of iid data sets each of size N. Then Eq|y(x;D)]
represents the average prediction function over the ensemble of data sets

o It can be show that the average squared loss of the prediction over the ensemble of data

sets takes the form
Ep[{y(x; D) — h(x)}?]
= (Eply(xD)] - h(X)}f + Ep[{y(x; D) — Eply(x 29)]}2]’

Y Al
Blas Variance




The Bias-Variance Decomposition

Ep[{y(x; D) — h(x)}*] = \{IE@ [y(x;D)] — h(x)}? 7 Ep [{ty(x; D) — Eply(x; D)]}Z]’

!
Bilas

|
\Variance

O
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Low Variance
High Bias

InA=26

InA=—-0.31

47
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o High Variance
o Low Bias



The Bias-Variance Decomposition

Ep[{y(x; D) — h(x)}*] = \{[ED [y(x;D)] — h(x)}? 7 Ep [{ty(x; D) — Eply(x; D)]}Z]I

!
Bilas

|
\Variance
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(bias)
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(bias)2 + variance
0.09 test error /
0.06
0.03¢}
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Figure: Plot of Squared bias and variance together with
their sum, corresponding to the results in the previous
figure. Also shown is the average test set error for a test
data set size of 1000 points.

Q The minimum value of (bias)? + variance o ccurs
around InA = —0.31

O It is close to the value that gives the minimum error on the
test data



Model Selection



Model Selection

Remember

o Polynomial curve fitting using regularized least squares

N
1 A
model y(x;w) = wg + wyx + wyox? + -+ wyxM Error E(w) = EZ{y(xn, w) —t,}* + 5 lw]|?
n=1

o Question: How to select an appropriate model for data (linear, non-linear, neural network, ... )?

o Question: For a selected model, how to select its hyper-parameters (M and A for linear model, num of
layers and neurons for a neural network, ... )

o Idea 1: Choose hyperparameters that work best on the training data

Train

BAD: remember the over-fitting problem in polynomial curve fitting with M = 9

o Idea 2: Choose hyperparameters that work best on test data

Train

BAD: No 1dea how algorithm will perform on new data (never do this)



Model Selection

o Idea 3: Split data into train, validation; choose hyperparameters on validation and evaluate on test

Better: but not useful for small data sets

o Idea 4: Cross-Validation: Split data into folds, try each - run 1
fold as validation and average the results

run 2

Very useful for small data sets, but bad for complex models

(models with many hyper-parameters such as neural -: run 3

networks)

run 4

Better for small data sets



