
Linear Models for Regression

Sadegh Eskandari

Department of Computer Science, University of Guilan

(Supervised)
(Regression)(Classification)

(Unsupervised)

(Clustering)

(Density Estimation) (Visualization)

(Reinforcement)

Remember: Algorithms that Can Learn

Remember: Supervised Learning

o Suppose that we are given a training set comprising 𝑁 observations of random variable 𝑥
(training set) :

o Moreover, for each observation 𝒙𝒊 we are given a target value 𝑡𝑖 (training target):

𝐗 = 𝐱𝟏, 𝐱𝟐, … , 𝐱𝑵
𝑻

𝐭 = 𝑡1, 𝑡2, … , 𝑡𝑁
𝑻

𝒇(𝐱; 𝚯)
𝐗

𝑳 = 𝟎

𝐿 (Ƹ𝑡, 𝑡)

𝑵𝒐

Ƹ𝑡

Model

Updata Θ

Remember: Polynomial Curve Fitting

o 𝐱 = 𝑥1, 𝑥2, … , 𝑥𝑁 is generated uniformaly in 0,1 .
o 𝒕 = 𝑡𝑖| 𝑡𝑖 = sin 2𝜋𝑥 +𝒩 0,0.3 , 𝑖 = 1, 2,… ,𝑁

sin 2𝜋𝑥

𝑁 = 20

𝑁 = 100

o The generating function in not known and the aim is

to estimate it such that:
❑ The estimated function should describe the training data

❑ The estimated function should generalize to new data

o In particular, we shall fit the data using a polynomial

function of the form

𝑦 𝐱;𝒘 = 𝑤0 + 𝑤1𝐱 + 𝑤2𝐱
2 +⋯+𝑤𝑀𝐱

𝑀

❑ 𝑀: the order of polynomial
❑ 𝑤 ≡ 𝑤0, 𝑤1, … , 𝑤𝑀 : The model parameters (unknown in

advance)

o 𝑦 𝐱,𝒘 is a linear function of the coefficients 𝒘.

Such functions are called linear models.

o An error function (loss function) is required to measure the misfit between the function

𝑦 𝐱,𝒘 , for any given 𝒘, and the training data points.

𝐸 𝒘 =
1

2
෍

𝑛=1

𝑁

𝑦 𝑥𝑛, 𝒘 − 𝑡𝑛
2

o 𝐸 𝒘 is a quadratic function of 𝒘,

o Therefore
𝜕𝐸

𝜕𝒘
is linear in the elements of 𝒘, and so the

minimization of the error function has a unique

solution, which can be found in closed form.

Remember: Polynomial Curve Fitting

Linear Basis Function Models

Linear Basis Function Models

o Linear Regression

𝑦 𝐱,𝐰 = 𝑤0 + ෍

𝑗=1

𝑀−1

𝑤𝑗𝜙𝑗 𝐱

o Functions 𝜙𝑗 𝐱 are known as basis functions

o The parameter 𝑤0 allows for any fixed offset in the data and is sometimes called a bias

parameter

o It is often convenient to define an additional dummy basis function 𝜙0(𝐱) = 1 so that

𝑦 𝐱,𝐰 = ෍

𝑗=0

𝑀−1

𝑤𝑗𝜙𝑗 𝐱 = 𝐰T𝝓 𝐱

• 𝐰 = 𝑤0, 𝑤1, … , 𝑤𝑀−1
T

• 𝝓 = 𝜙0, 𝜙1, … , 𝜙𝑀−1
T

Linear Basis Function Models

o Variant of basis functions:

❑ 𝜙𝑗 𝐱 = 𝐱 (also linear with respect to 𝐱)

▪ Limitation: unable to model non-linear data

❑ 𝜙𝑗 𝐱 = 𝐱j (polynomial)

▪ Limitation: polynomial basis functions are global functions of the input variable, so that changes in one

region of input space affect all other regions.

▪ This can be resolved by dividing the input space up into regions and fit a different polynomial in each

region, leading to spline functions

❑ 𝜙𝑗 𝑥 = exp −
𝑥−𝜇𝑗

2

2𝑠2
(Gaussian basis function)

❑ 𝜙𝑗 𝑥 = 𝜎
𝑥−𝜇𝑗

𝑠
where 𝜎 𝑎 =

1

1+exp −𝑎
(Sigmoidal basis function)

o The analysis here is independent of the particular choice of basis function set 

❑ 𝐱 = 𝑥1, 𝑥2, … , 𝑥𝑁 is generated uniformly in 0,1 .
❑ 𝒕 = 𝑡𝑖| 𝑡𝑖 = sin 2𝜋𝑥 +𝒩 0,0.3 , 𝑖 = 1, 2, … , 𝑁

sin 2𝜋𝑥

𝑁 = 20

Maximum likelihood and least squares

o Remember:

o Assume that the target variable 𝑡 is given by a

deterministic function 𝑦(𝐱,𝐰) with additive Gaussian

noise so that

𝑡 = 𝑦 𝐱,𝐰 + 𝜖

❑ 𝜖 is a zero mean Gaussian random variable with

precision 𝛽.

❑ Thus

𝑝 𝑡 𝐱,𝐰, 𝛽 = 𝒩(𝑡|𝑦 𝐱,𝐰 , 𝛽−1)

Maximum likelihood and least squares

o Consider a data set of inputs 𝐗 = {𝐱1, … , 𝐱𝑁} with corresponding target values 𝐭
= 𝑡1, … , 𝑡𝑁 .

𝑝 𝐭 𝐗,𝐰, 𝛽 =ෑ

𝑛=1

𝑁

𝑝(𝑡𝑛|𝐱𝑛, 𝒘, 𝛽) =ෑ

𝑛=1

𝑁

𝒩(𝑡𝑛|𝑦 𝐱𝑛, 𝐰 , 𝛽−1) =ෑ

𝑛=1

𝑁

𝒩(𝑡𝑛|𝐰
T𝝓 𝐱𝑛 , 𝛽−1)

o Assuming that the data points are iid, the likelihood function is expressed as:

𝑦 𝐱,𝐰 = ෍

𝑗=0

𝑀−1

𝑤𝑗𝜙𝑗 𝐱 = 𝐰T𝝓 𝐱𝑝 𝑡 𝐱,𝐰, 𝛽 = 𝒩(𝑡|𝑦 𝐱,𝐰 , 𝛽−1)

o Note: in supervised learning problems (such as regression and classification), we are not

seeking to model the distribution of the input variables.

o x will always appear in the set of conditioning variables,

o we will drop the x from expressions such as 𝑝(𝑡|𝐱,𝒘, 𝛽) in order to keep the notation uncluttered.

Maximum likelihood and least squares

o Taking the logarithm of the likelihood function, and making use of the standard form for the

univariate Gaussian, we have

ln 𝑝 𝐭 𝐰, 𝛽 = ෍

𝑛=1

𝑁

ln𝒩(𝑡𝑛|𝐰
T𝝓 𝐱𝑛 , 𝛽−1)

𝑝 𝐭 𝐰, 𝛽 =ෑ

𝑛=1

𝑁

𝒩(𝑡𝑛|𝐰
T𝝓 𝐱𝑛 , 𝛽−1)

=
𝑁

2
ln𝛽 −

𝑁

2
ln 2𝜋 − 𝛽

1

2
෍

𝑛=1

𝑁

𝑡𝑛 −𝐰T𝝓 𝐱𝑛
2

Remember: Sum of

Squares Error (𝐸𝐷 𝒘)o Therefore

𝒘𝑀𝐿 = 𝑎𝑟𝑔 max
𝒘

ln 𝑝 𝐭 𝐰, 𝛽

𝜕 ln 𝑝 𝐭 𝐰, 𝛽

𝜕𝒘
= 0

𝒘𝑀𝐿 = 𝚽T𝚽
−1
𝚽T𝐭

o 𝚽: The Design Matrix

o 𝚽T𝚽
−1
𝚽T𝐭: The Normal Equation for the least square problems

o 𝚽T𝚽
−1
𝚽T: The Moore-Penrose pseudo-inverse (a generalization of the

of matrix inverse to nonsquare matrices)

Sequential Learning

o Maximum likelihood method is a batch technique, which involves processing the entire

training set in one go.

𝒘𝑀𝐿 = 𝚽T𝚽
−1
𝚽T𝐭

o Then, it can be computationally costly for large data sets.

o If the data set is sufficiently large, it may be worthwhile to use sequential algorithms, also

known as on-line algorithms

o The most well-known sequential learning technique is stochastic gradient descent (also

known as sequential gradient descent)

o If the error function comprises a sum over data points 𝐸 = σ𝑛𝐸𝑛, then after presentation of

pattern 𝑛, the stochastic gradient descent algorithm updates the parameter vector 𝒘 using

𝒘 𝜏+1 = 𝒘(𝜏) − 𝜂∇𝐸𝑛
❑ 𝜏: The iteration number

❑ 𝜂: The learning rate parameter

❑ The value of 𝒘 is initialized to some starting vector 𝒘 0

Sequential Learning

o For the case of the sum-of-squares error function, this gives

𝒘 𝜏+1 = 𝒘(𝜏) − 𝜂∇𝐸𝑛
1

2
෍

𝑛=1

𝑁

𝑡𝑛 −𝐰T𝝓 𝐱𝑛
2

𝒘 𝜏+1 = 𝒘(𝜏) − 𝜂 𝑡𝑛 −𝒘T𝝓(𝐱𝑛 𝝓 𝐱𝑛

❑ This is known as least-mean-squares or the LMS algorithm.

Sequential Learning

o The value of 𝜂 needs to be chosen with care to ensure that the algorithm converges

𝒘 𝜏+1 = 𝒘(𝜏) − 𝜂∇𝐸𝑛

❑ Very large learning rate: the algorithm diverges (left figure)

❑ Very small learning rate: the algorithm takes long time to converge (middle figure)

❑ Best: the learning step size is proportional to the slope of the cost function, so the steps gradually get

smaller as the parameters approach the minimum (right figure)

Figures from hands-on machine learning (Aurélien Géron)

Regularized Least Squares

o Remember: We introduced the idea of regularization to

control overfitting.

o In regularization technique, the total error function to be

minimized takes the form

𝐸𝐷 𝒘 + 𝜆𝐸𝑤 𝒘

o The regularization term takes the following general

form:

𝐸𝑤 𝒘 =
1

2
෍

𝑗=1

𝑀

𝑤𝑗
𝑞

❑ 𝑞 = 1(lasso): generally results sparse models

❑ 𝑞 = 2 : (weight decay in machine learning literature and

parameter shrinkage in statistics): encourages weight values to

decay towards zero generally results sparse models

Multiple Outputs

o We have considered the case of a single target variable 𝑡.

𝒚 𝐱,𝒘 = 𝐖T𝝓(𝐱)

o In some applications, we may wish to predict K > 1 target variables, which we denote

collectively by the target vector t.

o Two approaches can be used for this problem:

❑ Introducing a different set of basis functions for each component of t, leading to multiple, independent

regression problems.

❑ Using the same set of basis functions to model all of the components of the target vector (this is a more interesting

approach)

o For the case of second approach:

❑ 𝒚: a K-dimensional column vector

❑ 𝐖: an 𝑀 × 𝐾 matrix of parameters

❑ 𝝓(𝐱): an M-dimensional column vector with

elements 𝜙𝑗 𝐱 , with 𝜙0 𝐱 = 1

𝑦1
𝑦2

𝑦𝐾

…

𝒚

𝑤01

𝐖T

𝑤11 𝑤𝑀1…

𝑤02 𝑤12 𝑤𝑀2…𝑤02

𝑤1𝐾 𝑤𝑀𝐾…𝑤0𝐾

… … …

𝝓

𝑦1
𝑦2

…

𝜙𝑀

1
𝜙1

…

Multiple Outputs

o Suppose we take the conditional distribution of the target vector to be an isotropic

Gaussian of the form

𝑝 𝐭 𝐱,𝐖, 𝛽 = 𝒩(𝐭|𝐖T𝝓(𝐱), 𝛽−1𝐈)

o If we have a set of observations 𝒕1, … , 𝒕𝑁, we can combine

these into a matrix 𝐓 of size 𝑁 × 𝐾 such that the 𝑛th row is

given by 𝒕𝑛
𝑇 . Similarly, we can combine the input vectors

𝐱1, … , 𝐱𝑁 into a matrix 𝐗.

𝑥11

𝐗

𝑥12 𝑥1𝐷…

𝑥21 𝑥22 𝑥2𝐷…

𝑥𝑁2 𝑥𝑁𝐷…𝑥𝑁1

… … …

𝐱1
𝐱2

𝐱𝑁

𝑡11

𝐓

𝑡12 …

𝑡21 𝑡22 …

𝑡𝑁2 𝑡𝑁𝐾…𝑡𝑁1

… …

𝐭1
𝐭2

𝐭𝑁

𝑡1𝐾

𝑡2𝐾

…

o The log likelihood function is then given by

ln 𝑝 𝐓 𝐗,𝐖, 𝛽 = ෍

𝑛=1

𝑁

ln𝒩(𝐭n|𝐖
T𝝓(𝐱n), 𝛽

−1𝐈)

=
𝑁𝐾

2
ln

𝛽

2𝜋
−
𝛽

2
෍

𝑛=1

𝑁

𝐭n −𝐖T𝝓 𝐱n
2

𝜕 ln 𝑝 𝐓 𝐗,𝐖, 𝛽

𝜕𝐖
= 0

𝑾𝑀𝐿 = 𝚽T𝚽
−1
𝚽T𝐓

The Bias-Variance Decomposition

The Bias-Variance Decomposition

o Suppose we model the function ℎ(𝐱) using a parametric function 𝑦(𝐱,𝒘) governed by a

parameter vector 𝒘

o For any given data set 𝒟, we can run our learning algorithm and obtain a prediction

function 𝑦(𝐱; 𝒟)

o The squared loss of the prediction takes the form

𝑦 𝐱; 𝒟 − ℎ 𝐱 2

o Suppose we have a large number of iid data sets each of size 𝑁. Then 𝔼𝒟 𝑦(𝐱;𝒟)
represents the average prediction function over the ensemble of data sets

o It can be show that the average squared loss of the prediction over the ensemble of data

sets takes the form
𝔼𝒟 𝑦 𝐱;𝒟 − ℎ 𝐱 2

= 𝔼𝒟 𝑦(𝐱;𝒟) − ℎ 𝐱 2 + 𝔼𝒟 𝑦 𝐱;𝒟 − 𝔼𝒟 𝑦(𝐱;𝒟) 2

Bias Variance

𝔼𝒟 𝑦 𝐱;𝒟 − ℎ 𝐱 2

= 𝔼𝒟 𝑦(𝐱;𝒟) − ℎ 𝐱 2 + 𝔼𝒟 𝑦 𝐱;𝒟 − 𝔼𝒟 𝑦(𝐱;𝒟) 2

Bias Variance

𝔼𝒟 𝑦 𝐱;𝒟 − ℎ 𝐱 2

= 𝔼𝒟 𝑦(𝐱;𝒟) − ℎ 𝐱 2 + 𝔼𝒟 𝑦 𝐱;𝒟 − 𝔼𝒟 𝑦(𝐱;𝒟) 2

Bias

The Bias-Variance Decomposition

Variance

𝔼𝒟 𝑦 𝐱;𝒟 − ℎ 𝐱 2 = 𝔼𝒟 𝑦(𝐱;𝒟) − ℎ 𝐱 2 + 𝔼𝒟 𝑦 𝐱;𝒟 − 𝔼𝒟 𝑦(𝐱;𝒟) 2

Bias

ℎ(𝑥)

𝔼𝒟 𝑦(𝐱;𝒟)

o Low Variance

o High Bias

o High Variance

o Low Bias

The Bias-Variance Decomposition

Variance

𝔼𝒟 𝑦 𝐱;𝒟 − ℎ 𝐱 2 = 𝔼𝒟 𝑦(𝐱;𝒟) − ℎ 𝐱 2 + 𝔼𝒟 𝑦 𝐱;𝒟 − 𝔼𝒟 𝑦(𝐱;𝒟) 2

Bias

Figure: Plot of Squared bias and variance together with

their sum, corresponding to the results in the previous

figure. Also shown is the average test set error for a test

data set size of 1000 points.

❑ The minimum value of 𝑏𝑖𝑎𝑠 2 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 o ccurs

around ln 𝜆 = −0.31
❑ It is close to the value that gives the minimum error on the

test data

Model Selection

o Polynomial curve fitting using regularized least squares

Remember

𝑦 𝑥;𝒘 = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥
2 +⋯+𝑤𝑀𝑥

𝑀model Error 𝐸 𝒘 =
1

2
෍

𝑛=1

𝑁

𝑦 𝑥𝑛, 𝒘 − 𝑡𝑛
2 +

𝜆

2
𝑤 2

o Question: How to select an appropriate model for data (linear, non-linear, neural network, …)?

Model Selection

o Question: For a selected model, how to select its hyper-parameters (𝑀 and 𝜆 for linear model, num of

layers and neurons for a neural network, …)

o Idea 1: Choose hyperparameters that work best on the training data

Train

BAD: remember the over-fitting problem in polynomial curve fitting with 𝑀 = 9

o Idea 2: Choose hyperparameters that work best on test data

Train

BAD: No idea how algorithm will perform on new data (never do this)

Test

Model Selection

o Idea 3: Split data into train, validation; choose hyperparameters on validation and evaluate on test

Train

Better: but not useful for small data sets

TestValidation

o Idea 4: Cross-Validation: Split data into folds, try each

fold as validation and average the results

Very useful for small data sets, but bad for complex models

(models with many hyper-parameters such as neural

networks)

Better for small data sets

