Linear Models for Regression

Sadegh Eskandari

Department of Computer Science, University of Guilan

Remember: Algorithms that Can Learn

Remember: Supervised Learning

- Suppose that we are given a training set comprising N observations of random variable x (training set): $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)^T$
- Moreover, for each observation x_i we are given a target value t_i (training target):

$$\mathbf{t} = (t_1, t_2, \dots, t_N)^T$$

Remember: Polynomial Curve Fitting

•
$$\mathbf{x} = \{x_1, x_2, ..., x_N\}$$
 is generated uniformaly in [0,1].
• $\mathbf{t} = \{t_i | t_i = \sin(2\pi x) + \mathcal{N}(0, 0.3), i = 1, 2, ..., N\}$

- The generating function in not known and the aim is to estimate it such that:
 - The estimated function should describe the training data
 - **The estimated function should generalize to new data**
- In particular, we shall fit the data using a polynomial function of the form

$$y(\mathbf{x}; \mathbf{w}) = w_0 + w_1 \mathbf{x} + w_2 \mathbf{x}^2 + \dots + w_M \mathbf{x}^M$$

- □ *M*: the order of polynomial
- □ $w \equiv [w_0, w_1, ..., w_M]$: The model parameters (unknown in advance)
- $y(\mathbf{x}, \mathbf{w})$ is a linear function of the coefficients \mathbf{w} . Such functions are called linear models.

Remember: Polynomial Curve Fitting

• An error function (loss function) is required to measure the misfit between the function $y(\mathbf{x}, \mathbf{w})$, for any given \mathbf{w} , and the training data points.

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

E(w) is a quadratic function of w,
Therefore \$\frac{\partial E}{\partial w}\$ is linear in the elements of w, and so the minimization of the error function has a unique solution, which can be found in closed form.

Linear Basis Function Models

Linear Basis Function Models

• Linear Regression

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x})$$

- Functions $\phi_i(\mathbf{x})$ are known as basis functions
- The parameter w_0 allows for any fixed offset in the data and is sometimes called a bias Ο parameter
- It is often convenient to define an additional dummy basis function $\phi_0(\mathbf{x}) = 1$ so that

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

- $\mathbf{w} = (w_0, w_1, ..., w_{M-1})^{\mathrm{T}}$ $\boldsymbol{\phi} = (\phi_0, \phi_1, ..., \phi_{M-1})^{\mathrm{T}}$

Linear Basis Function Models

- Variant of basis functions:
 - $\Box \phi_j(\mathbf{x}) = \mathbf{x}$ (also linear with respect to \mathbf{x})
 - Limitation: unable to model non-linear data

 $\Box \phi_j(\mathbf{x}) = \mathbf{x}^j$ (polynomial)

- Limitation: polynomial basis functions are global functions of the input variable, so that changes in one region of input space affect all other regions.
- This can be resolved by dividing the input space up into regions and fit a different polynomial in each region, leading to spline functions

$$\Box \ \phi_j(x) = \exp\left\{-\frac{\left(x-\mu_j\right)^2}{2s^2}\right\} \text{(Gaussian basis function)}$$
$$\Box \ \phi_j(x) = \sigma\left(\frac{x-\mu_j}{s}\right) \text{ where } \sigma(a) = \frac{1}{1+\exp(-a)} \text{ (Sigmoidal basis function)}$$

 $\circ~$ The analysis here is independent of the particular choice of basis function set $\textcircled{\mbox{\footnotesize \mbox{\odot}}}$

Maximum likelihood and least squares

• **Remember:**

□ $\mathbf{x} = \{x_1, x_2, ..., x_N\}$ is generated uniformly in [0,1]. □ $\mathbf{t} = \{t_i | t_i = \sin(2\pi x) + \mathcal{N}(0, 0.3), i = 1, 2, ..., N\}$

• Assume that the target variable t is given by a deterministic function $y(\mathbf{x}, \mathbf{w})$ with additive Gaussian noise so that

$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon$$

 $\Box \epsilon$ is a zero mean Gaussian random variable with precision β .

Thus

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1})$$

Maximum likelihood and least squares

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1}) \qquad y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

- Consider a data set of inputs $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ with corresponding target values $\mathbf{t} = \{t_1, \dots, t_N\}$.
- Assuming that the data points are iid, the likelihood function is expressed as:

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} p(t_n | \mathbf{x}_n, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n | y(\mathbf{x}_n, \mathbf{w}), \beta^{-1}) = \prod_{n=1}^{N} \mathcal{N}(t_n | \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1})$$

- Note: in supervised learning problems (such as regression and classification), we are not seeking to model the distribution of the input variables.
 - \circ x will always appear in the set of conditioning variables,
 - we will drop the **x** from expressions such as $p(t|\mathbf{x}, \mathbf{w}, \beta)$ in order to keep the notation uncluttered.

Maximum likelihood and least squares

$$p(\mathbf{t}|\mathbf{w},\beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n),\beta^{-1})$$

• Taking the logarithm of the likelihood function, and making use of the standard form for the univariate Gaussian, we have

$$\ln p(\mathbf{t}|\mathbf{w},\beta) = \sum_{n=1}^{N} \ln \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n),\beta^{-1}) = \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta \left(\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n)\}^2\right)$$

• Therefore

 $\boldsymbol{w}_{ML} = \arg \max_{\boldsymbol{w}} \ln p(\mathbf{t}|\mathbf{w},\beta)$

$$\mathbf{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}$$

 $\frac{\partial \ln p(\mathbf{t}|\mathbf{w},\beta)}{\partial w} = 0$ $w_{ML} = (\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi})^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$ **Remember:** Sum of Squares Error $(E_D(w))$

Φ: The Design Matrix
 (Φ^TΦ)⁻¹Φ^Tt: The Normal Equation for the least square problems
 (Φ^TΦ)⁻¹Φ^T: The Moore-Penrose pseudo-inverse (a generalization of the of matrix inverse to nonsquare matrices)

Sequential Learning

 $\boldsymbol{w}_{ML} = \left(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi}\right)^{-1}\boldsymbol{\Phi}^{\mathrm{T}}\mathbf{t}$

- Maximum likelihood method is a batch technique, which involves processing the entire training set in one go.
- Then, it can be computationally costly for large data sets.
- If the data set is sufficiently large, it may be worthwhile to use sequential algorithms, also known as on-line algorithms
- The most well-known sequential learning technique is stochastic gradient descent (also known as sequential gradient descent)
- If the error function comprises a sum over data points $E = \sum_{n} E_{n}$, then after presentation of pattern *n*, the stochastic gradient descent algorithm updates the parameter vector *w* using

$$\boldsymbol{w}^{(\tau+1)} = \boldsymbol{w}^{(\tau)} - \eta \nabla E_n$$

 \Box τ : The iteration number

 \square η : The learning rate parameter

 \Box The value of **w** is initialized to some starting vector $w^{(0)}$

Sequential Learning

$$\boldsymbol{w}^{(\tau+1)} = \boldsymbol{w}^{(\tau)} - \eta \nabla E_n \qquad \qquad \frac{1}{2} \sum_{n=1}^N \{t_n - \boldsymbol{w}^T \boldsymbol{\phi}(\mathbf{x}_n)\}^2$$

 \circ For the case of the sum-of-squares error function, this gives

$$\boldsymbol{w}^{(\tau+1)} = \boldsymbol{w}^{(\tau)} - \eta \big(\boldsymbol{t}_n - \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) \boldsymbol{\phi}(\mathbf{x}_n)$$

□ This is known as least-mean-squares or the LMS algorithm.

Sequential Learning

 $\boldsymbol{w}^{(\tau+1)} = \boldsymbol{w}^{(\tau)} - \eta \nabla E_n$

• The value of η needs to be chosen with care to ensure that the algorithm converges

□ Very large learning rate: the algorithm diverges (left figure)

U Very small learning rate: the algorithm takes long time to converge (middle figure)

□ Best: the learning step size is proportional to the slope of the cost function, so the steps gradually get smaller as the parameters approach the minimum (right figure)

Figures from hands-on machine learning (Aurélien Géron)

Regularized Least Squares

- **Remember**: We introduced the idea of regularization to control overfitting.
- In regularization technique, the total error function to be minimized takes the form

 $E_D(\boldsymbol{w}) + \lambda E_w(\boldsymbol{w})$

• The regularization term takes the following general form:

$$E_w(\boldsymbol{w}) = \frac{1}{2} \sum_{j=1}^M \|w_j\|^q$$

- \Box q = 1(lasso): generally results sparse models
- \Box q = 2: (weight decay in machine learning literature and parameter shrinkage in statistics): encourages weight values to decay towards zero generally results sparse models

-557682.99

125201.43

 w_8^\star

 w_{9}^{\star}

Multiple Outputs

- \circ We have considered the case of a single target variable *t*.
- In some applications, we may wish to predict K > 1 target variables, which we denote collectively by the target vector **t**.
- \circ Two approaches can be used for this problem:
 - □ Introducing a different set of basis functions for each component of t, leading to multiple, independent regression problems.
 - Using the same set of basis functions to model all of the components of the target vector (this is a more interesting approach)

 y_1

 y_2

3

 y_K

y

 $\circ~$ For the case of second approach:

$$\mathbf{w}(\mathbf{x}, \mathbf{w}) = \mathbf{W}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

- \Box y: a K-dimensional column vector
- **W**: an $M \times K$ matrix of parameters
- $\phi(\mathbf{x}): an M-dimensional column vector with elements <math>\phi_j(\mathbf{x})$, with $\phi_0(\mathbf{x}) = 1$

VV -						
тал. Т						
	<i>W</i> _{0<i>K</i>}	<i>W</i> _{1<i>K</i>}		W _{MK}		
	÷	÷		÷	:	
	<i>w</i> ₀₂	<i>w</i> ₁₂		<i>W</i> _{<i>M</i>2}		
	w_{01}	w_{11}		w_{M1}		
, r					ϕ_1	

 ϕ

Multiple Outputs

• Suppose we take the conditional distribution of the target vector to be an isotropic Gaussian of the form

$$p(\mathbf{t}|\mathbf{x}, \mathbf{W}, \beta) = \mathcal{N}(\mathbf{t}|\mathbf{W}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}), \beta^{-1}\mathbf{I})$$

- If we have a set of observations $t_1, ..., t_N$, we can combine these into a matrix **T** of size $N \times K$ such that the n^{th} row is given by t_n^T . Similarly, we can combine the input vectors $\mathbf{x}_1, ..., \mathbf{x}_N$ into a matrix **X**.
- $\circ~$ The log likelihood function is then given by

$$\ln p(\mathbf{T}|\mathbf{X}, \mathbf{W}, \beta) = \sum_{n=1}^{N} \ln \mathcal{N}(\mathbf{t}_{n} | \mathbf{W}^{T} \boldsymbol{\phi}(\mathbf{x}_{n}), \beta^{-1} \mathbf{I})$$
$$= \frac{NK}{2} \ln \left(\frac{\beta}{2\pi}\right) - \frac{\beta}{2} \sum_{n=1}^{N} \|\mathbf{t}_{n} - \mathbf{W}^{T} \boldsymbol{\phi}(\mathbf{x}_{n})\|^{2}$$

$$\frac{\partial \ln p(\mathbf{T}|\mathbf{X}, \mathbf{W}, \beta)}{\partial \mathbf{W}} = 0$$

$$W_{ML} = (\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{T}$$

x ₁ x ₂	x ₁₁ x ₂₁	x ₁₂ x ₂₂	 x_{1D} x_{2D}
	:	:	:
\mathbf{x}_N	x_{N1}	<i>x</i> _{N2}	 x _{ND}

X

 $\mathbf{t}_N \mid t_{N1} \quad t_{N2} \quad \dots \quad t_{NK}$

- Suppose we model the function $h(\mathbf{x})$ using a parametric function $y(\mathbf{x}, \mathbf{w})$ governed by a parameter vector \mathbf{w}
- For any given data set \mathcal{D} , we can run our learning algorithm and obtain a prediction function $y(\mathbf{x}; \mathcal{D})$
- $\circ~$ The squared loss of the prediction takes the form

$$\{y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x})\}^2$$

- Suppose we have a large number of iid data sets each of size N. Then $\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]$ represents the average prediction function over the ensemble of data sets
- It can be show that the average squared loss of the prediction over the ensemble of data sets takes the form ∇

$$\mathbb{E}_{\mathcal{D}}[\{y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x})\}^{2}] = \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2} + \mathbb{E}_{\mathcal{D}}[\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^{2}] \}$$

Bias Variance

Figure: Plot of Squared bias and variance together with their sum, corresponding to the results in the previous figure. Also shown is the average test set error for a test data set size of 1000 points.

- □ The minimum value of $(bias)^2 + variance$ o ccurs around $\ln \lambda = -0.31$
- It is close to the value that gives the minimum error on the test data

Model Selection

Model Selection

Remember

• Polynomial curve fitting using regularized least squares

model $y(x; w) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M$

Error

 $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|w\|^2$

- Question: How to select an appropriate model for data (linear, non-linear, neural network, ...)?
- Question: For a selected model, how to select its hyper-parameters (*M* and λ for linear model, num of layers and neurons for a neural network, ...)
- Idea 1: Choose hyperparameters that work best on the training data

Train

BAD: remember the over-fitting problem in polynomial curve fitting with M = 9

• Idea 2: Choose hyperparameters that work best on test data

Train

Test

BAD: No idea how algorithm will perform on new data (never do this)

Model Selection

• Idea 3: Split data into train, validation; choose hyperparameters on validation and evaluate on test

	Train	Validation	Test	
	Better: but not useful for small data sets			
0	Idea 4: Cross-Validation: Split data into folds, try each fold as validation and average the results			run 1

Very useful for small data sets, but bad for complex models (models with many hyper-parameters such as neural networks)

Better for small data sets