Linear Models for Regression

Sadegh Eskandari
Department of Computer Science, University of Guilan

Remember: Algorithms that Can Learn

(Reinforcement)

(Supervised)
(Classification)

(Regression)

(Unsupervised)

(Clustering)

(Density Estimation)

(Visualization)

Remember: Supervised Learning

- Suppose that we are given a training set comprising N observations of random variable x (training set) :

$$
\mathbf{X}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)^{T}
$$

- Moreover, for each observation $\boldsymbol{x}_{\boldsymbol{i}}$ we are given a target value t_{i} (training target):

$$
\mathbf{t}=\left(t_{1}, t_{2}, \ldots, t_{N}\right)^{T}
$$

Remember: Polynomial Curve Fitting

- $\mathbf{x}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ is generated uniformaly in $[0,1]$.

○ $\boldsymbol{t}=\left\{t_{i} \mid t_{i}=\sin (2 \pi x)+\mathcal{N}(0,0.3), i=1,2, \ldots, N\right\}$

- The generating function in not known and the aim is to estimate it such that:
- The estimated function should describe the training data
- The estimated function should generalize to new data
- In particular, we shall fit the data using a polynomial function of the form

$$
y(\mathbf{x} ; \boldsymbol{w})=w_{0}+w_{1} \mathbf{x}+w_{2} \mathbf{x}^{2}+\cdots+w_{M} \mathbf{x}^{M}
$$

$\square M$: the order of polynomial
$w \equiv\left[w_{0}, w_{1}, \ldots, w_{M}\right]$: The model parameters (unknown in advance)

- $y(\mathbf{x}, \boldsymbol{w})$ is a linear function of the coefficients \boldsymbol{w}. Such functions are called linear models.

Remember: Polynomial Curve Fitting

- An error function (loss function) is required to measure the misfit between the function $y(\mathbf{x}, \boldsymbol{w})$, for any given \boldsymbol{w}, and the training data points.

$$
E(\boldsymbol{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \boldsymbol{w}\right)-t_{n}\right\}^{2}
$$

- $E(\boldsymbol{w})$ is a quadratic function of \boldsymbol{w},
- Therefore $\frac{\partial E}{\partial \boldsymbol{w}}$ is linear in the elements of \boldsymbol{w}, and so the minimization of the error function has a unique
 solution, which can be found in closed form.

Linear Basis Function Models

Linear Basis Function Models

- Linear Regression

$$
y(\mathbf{x}, \mathbf{w})=w_{0}+\sum_{j=1}^{M-1} w_{j} \phi_{j}(\mathbf{x})
$$

- Functions $\phi_{j}(\mathbf{x})$ are known as basis functions
- The parameter w_{0} allows for any fixed offset in the data and is sometimes called a bias parameter
- It is often convenient to define an additional dummy basis function $\phi_{0}(\mathbf{x})=1$ so that

$$
y(\mathbf{x}, \mathbf{w})=\sum_{j=0}^{M-1} w_{j} \phi_{j}(\mathbf{x})=\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})
$$

- $\mathbf{w}=\left(w_{0}, w_{1}, \ldots, w_{M-1}\right)^{\mathrm{T}}$
- $\boldsymbol{\phi}=\left(\phi_{0}, \phi_{1}, \ldots, \phi_{M-1}\right)^{\mathrm{T}}$

Linear Basis Function Models

- Variant of basis functions:
$\square \phi_{j}(\mathbf{x})=\mathbf{x}$ (also linear with respect to $\left.\mathbf{x}\right)$
- Limitation: unable to model non-linear data
$\square \phi_{j}(\mathbf{x})=\mathbf{x}^{\mathbf{j}}$ (polynomial)
- Limitation: polynomial basis functions are global functions of the input variable, so that changes in one region of input space affect all other regions.
- This can be resolved by dividing the input space up into regions and fit a different polynomial in each region, leading to spline functions
- $\phi_{j}(x)=\exp \left\{-\frac{\left(x-\mu_{j}\right)^{2}}{2 s^{2}}\right\}$ (Gaussian basis function)
- $\phi_{j}(x)=\sigma\left(\frac{x-\mu_{j}}{s}\right)$ where $\sigma(a)=\frac{1}{1+\exp (-a)}$ (Sigmoidal basis function)
- The analysis here is independent of the particular choice of basis function set $)$

Maximum likelihood and least squares

- Remember:
- $\mathbf{x}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ is generated uniformly in $[0,1]$.
$\boldsymbol{t}=\left\{t_{i} \mid t_{i}=\sin (2 \pi x)+\mathcal{N}(0,0.3), i=1,2, \ldots, N\right\}$
- Assume that the target variable t is given by a deterministic function $y(\mathbf{x}, \mathbf{w})$ with additive Gaussian
 noise so that

$$
t=y(\mathbf{x}, \mathbf{w})+\epsilon
$$

$\square \epsilon$ is a zero mean Gaussian random variable with precision β.

- Thus

$$
p(t \mid \mathbf{x}, \mathbf{w}, \beta)=\mathcal{N}\left(t \mid y(\mathbf{x}, \mathbf{w}), \beta^{-1}\right)
$$

Maximum likelihood and least squares

$$
p(t \mid \mathbf{x}, \mathbf{w}, \beta)=\mathcal{N}\left(t \mid y(\mathbf{x}, \mathbf{w}), \beta^{-1}\right) \quad y(\mathbf{x}, \mathbf{w})=\sum_{j=0}^{M-1} w_{j} \phi_{j}(\mathbf{x})=\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})
$$

○ Consider a data set of inputs $\mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$ with corresponding target values \mathbf{t} $=\left\{t_{1}, \ldots, t_{N}\right\}$.

- Assuming that the data points are iid, the likelihood function is expressed as:

$$
p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \beta)=\prod_{n=1}^{N} p\left(t_{n} \mid \mathbf{x}_{n}, \boldsymbol{w}, \beta\right)=\prod_{n=1}^{N} \mathcal{N}\left(t_{n} \mid y\left(\mathbf{x}_{n}, \mathbf{w}\right), \beta^{-1}\right)=\prod_{n=1}^{N} \mathcal{N}\left(t_{n} \mid \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right), \beta^{-1}\right)
$$

- Note: in supervised learning problems (such as regression and classification), we are not seeking to model the distribution of the input variables.
- \mathbf{x} will always appear in the set of conditioning variables,
- we will drop the \mathbf{x} from expressions such as $p(t \mid \mathbf{x}, \boldsymbol{w}, \beta)$ in order to keep the notation uncluttered.

Maximum likelihood and least squares

$$
p(\mathbf{t} \mid \mathbf{w}, \beta)=\prod_{n=1}^{N} \mathcal{N}\left(t_{n} \mid \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right), \beta^{-1}\right)
$$

- Taking the logarithm of the likelihood function, and making use of the standard form for the univariate Gaussian, we have
$\ln p(\mathbf{t} \mid \mathbf{w}, \beta)=\sum_{n=1}^{N} \ln \mathcal{N}\left(t_{n} \mid \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right), \beta^{-1}\right)=\frac{N}{2} \ln \beta-\frac{N}{2} \ln (2 \pi)-\beta\left(\frac{1}{2} \sum_{n=1}^{N}\left\{t_{n}-\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)\right\}^{2}\right)$
- Therefore

$$
\boldsymbol{w}_{M L}=\arg \max _{\boldsymbol{w}} \ln p(\mathbf{t} \mid \mathbf{w}, \beta)
$$

$$
\frac{\partial \ln p(\mathbf{t} \mid \mathbf{w}, \beta)}{\partial \boldsymbol{w}}=0
$$

Remember: Sum of

$$
\boldsymbol{w}_{M L}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}
$$

$$
\boldsymbol{\Phi}=\left(\begin{array}{cccc}
\phi_{0}\left(\mathbf{x}_{1}\right) & \phi_{1}\left(\mathbf{x}_{1}\right) & \cdots & \phi_{M-1}\left(\mathbf{x}_{1}\right) \\
\phi_{0}\left(\mathbf{x}_{2}\right) & \phi_{1}\left(\mathbf{x}_{2}\right) & \cdots & \phi_{M-1}\left(\mathbf{x}_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_{0}\left(\mathbf{x}_{N}\right) & \phi_{1}\left(\mathbf{x}_{N}\right) & \cdots & \phi_{M-1}\left(\mathbf{x}_{N}\right)
\end{array}\right)
$$

- $\boldsymbol{\Phi}$: The Design Matrix
- $\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}$: The Normal Equation for the least square problems
- $\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}}$: The Moore-Penrose pseudo-inverse (a generalization of the of matrix inverse to nonsquare matrices)

Sequential Learning

$$
\boldsymbol{w}_{M L}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}
$$

- Maximum likelihood method is a batch technique, which involves processing the entire training set in one go.
- Then, it can be computationally costly for large data sets.
- If the data set is sufficiently large, it may be worthwhile to use sequential algorithms, also known as on-line algorithms
- The most well-known sequential learning technique is stochastic gradient descent (also known as sequential gradient descent)
- If the error function comprises a sum over data points $E=\sum_{n} E_{n}$, then after presentation of pattern n, the stochastic gradient descent algorithm updates the parameter vector \boldsymbol{w} using

$$
\boldsymbol{w}^{(\tau+1)}=\boldsymbol{w}^{(\tau)}-\eta \nabla E_{n}
$$

$\square \tau$: The iteration number
\square : The learning rate parameter
The value of \boldsymbol{w} is initialized to some starting vector $\boldsymbol{w}^{(0)}$

Sequential Learning

$$
\boldsymbol{w}^{(\tau+1)}=\boldsymbol{w}^{(\tau)}-\eta \nabla E_{n} \quad \frac{1}{2} \sum_{n=1}^{N}\left\{t_{n}-\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)\right\}^{2}
$$

- For the case of the sum-of-squares error function, this gives

$$
\boldsymbol{w}^{(\tau+1)}=\boldsymbol{w}^{(\tau)}-\eta\left(t_{n}-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right) \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)\right.
$$

\square This is known as least-mean-squares or the LMS algorithm.

Sequential Learning

$$
\boldsymbol{w}^{(\tau+1)}=\boldsymbol{w}^{(\tau)}-\eta \nabla E_{n}
$$

- The value of η needs to be chosen with care to ensure that the algorithm converges

Very large learning rate: the algorithm diverges (left figure)
Very small learning rate: the algorithm takes long time to converge (middle figure)
\square Best: the learning step size is proportional to the slope of the cost function, so the steps gradually get smaller as the parameters approach the minimum (right figure)

Figures from hands-on machine learning (Aurélien Géron)

Regularized Least Squares

- Remember: We introduced the idea of regularization to control overfitting.
- In regularization technique, the total error function to be minimized takes the form

$$
E_{D}(\boldsymbol{w})+\lambda E_{w}(\boldsymbol{w})
$$

- The regularization term takes the following general form:

$$
E_{w}(\boldsymbol{w})=\frac{1}{2} \sum_{j=1}^{M}\left\|w_{j}\right\|^{q}
$$

- $q=1$ (lasso): generally results sparse models
- $q=2$: (weight decay in machine learning literature and parameter shrinkage in statistics): encourages weight values to
 decay towards zero generally results sparse models

Multiple Outputs

- We have considered the case of a single target variable t.
- In some applications, we may wish to predict $\mathrm{K}>1$ target variables, which we denote collectively by the target vector \mathbf{t}.
- Two approaches can be used for this problem:
\square Introducing a different set of basis functions for each component of t, leading to multiple, independent regression problems.
- Using the same set of basis functions to model all of the components of the target vector (this is a more interesting approach)
- For the case of second approach:

$$
\boldsymbol{y}(\mathbf{x}, \boldsymbol{w})=\mathbf{W}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})
$$$\boldsymbol{y}$: a K-dimensional column vector

W: an $M \times K$ matrix of parameters

- $\boldsymbol{\phi}(\mathbf{x})$: an M -dimensional column vector with
 elements $\phi_{j}(\mathbf{x})$, with $\phi_{0}(\mathbf{x})=1$

Multiple Outputs

- Suppose we take the conditional distribution of the target vector to be an isotropic Gaussian of the form

$$
p(\mathbf{t} \mid \mathbf{x}, \mathbf{W}, \beta)=\mathcal{N}\left(\mathbf{t} \mid \mathbf{W}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}), \beta^{-1} \mathbf{I}\right)
$$

- If we have a set of observations $\boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{N}$, we can combine these into a matrix \mathbf{T} of size $N \times K$ such that the $n^{\text {th }}$ row is given by \boldsymbol{t}_{n}^{T}. Similarly, we can combine the input vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ into a matrix \mathbf{X}.
- The log likelihood function is then given by

$$
\begin{array}{ll}
\ln p(\mathbf{T} \mid \mathbf{X}, \mathbf{W}, \beta)=\sum_{n=1}^{N} \ln \mathcal{N}\left(\mathbf{t}_{\mathrm{n}} \mid \mathbf{W}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{\mathrm{n}}\right), \beta^{-1} \mathbf{I}\right) & \frac{\partial \ln p(\mathbf{T} \mid \mathbf{X}, \mathbf{W}, \beta)}{\partial \mathbf{W}}=0 \\
=\frac{N K}{2} \ln \left(\frac{\beta}{2 \pi}\right)-\frac{\beta}{2} \sum_{n=1}^{N}\left\|\mathbf{t}_{\mathrm{n}}-\mathbf{W}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{\mathrm{n}}\right)\right\|^{2} &
\end{array}
$$

\mathbf{t}_{1}				
\mathbf{t}_{2}	t_{11}	t_{12}	\ldots	$t_{1 K}$
t_{21}	t_{22}	\ldots	$t_{2 K}$	
\vdots	\vdots		\vdots	
\mathbf{t}_{N}	$t_{N 1}$	$t_{N 2}$	\ldots	$t_{N K}$

T

$$
\boldsymbol{W}_{M L}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{T}
$$

The Bias-Variance Decomposition

The Bias-Variance Decomposition

- Suppose we model the function $h(\mathbf{x})$ using a parametric function $y(\mathbf{x}, \boldsymbol{w})$ governed by a parameter vector \boldsymbol{w}
- For any given data set \mathcal{D}, we can run our learning algorithm and obtain a prediction function $y(\mathbf{x} ; \mathcal{D})$
- The squared loss of the prediction takes the form

$$
\{y(\mathbf{x} ; \mathcal{D})-h(\mathbf{x})\}^{2}
$$

- Suppose we have a large number of iid data sets each of size N. Then $\mathbb{E}_{\mathcal{D}}[y(\mathbf{x} ; \mathcal{D})]$ represents the average prediction function over the ensemble of data sets
- It can be show that the average squared loss of the prediction over the ensemble of data sets takes the form

$$
\begin{aligned}
& \mathbb{E}_{\mathcal{D}}\left[\{y(\mathbf{x} ; \mathcal{D})-h(\mathbf{x})\}^{2}\right] \\
& =\underbrace{\left\{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x} ; \mathcal{D})]-h(\mathbf{x})\right\}^{2}}_{\text {Bias }}+\underbrace{\mathbb{E}_{\mathcal{D}}\left[\left\{y(\mathbf{x} ; \mathcal{D})-\mathbb{E}_{\mathcal{D}}[y(\mathbf{x} ; \mathcal{D})]\right\}^{2}\right]}_{\text {Variance }}
\end{aligned}
$$

The Bias-Variance Decomposition

$$
\mathbb{E}_{\mathcal{D}}\left[\{y(\mathbf{x} ; \mathcal{D})-h(\mathbf{x})\}^{2}\right]=\underbrace{\left\{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x} ; \mathcal{D})]-h(\mathbf{x})\right\}^{2}}_{\text {Bias }}+\underbrace{+\mathbb{E}_{\mathcal{D}}\left[\left\{y(\mathbf{x} ; \mathcal{D})-\mathbb{E}_{\mathcal{D}}[y(\mathbf{x} ; \mathcal{D})]\right\}^{2}\right]}_{\text {Variance }}
$$

The Bias-Variance Decomposition

$$
\mathbb{E}_{\mathcal{D}}\left[\{y(\mathbf{x} ; \mathcal{D})-h(\mathbf{x})\}^{2}\right]=\underbrace{\left\{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x} ; \mathcal{D})]-h(\mathbf{x})\right\}^{2}}_{\text {Bias }}+\underbrace{+\mathbb{E}_{\mathcal{D}}\left[\left\{y(\mathbf{x} ; \mathcal{D})-\mathbb{E}_{\mathcal{D}}[y(\mathbf{x} ; \mathcal{D})]\right\}^{2}\right]}_{\text {Variance }}
$$

Figure: Plot of Squared bias and variance together with their sum, corresponding to the results in the previous figure. Also shown is the average test set error for a test data set size of 1000 points.

- The minimum value of (bias) $)^{2}+$ variance o ccurs around $\ln \lambda=-0.31$
It is close to the value that gives the minimum error on the test data

Model Selection

Model Selection

Remember

- Polynomial curve fitting using regularized least squares model $y(x ; \boldsymbol{w})=w_{0}+w_{1} x+w_{2} x^{2}+\cdots+w_{M} x^{M}$ Error $\quad E(w)=\frac{1}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, w\right)-t_{n}\right\}^{2}+\frac{\lambda}{2}\|w\|^{2}$
- Question: How to select an appropriate model for data (linear, non-linear, neural network, ...)?
- Question: For a selected model, how to select its hyper-parameters (M and λ for linear model, num of layers and neurons for a neural network, ...)
- Idea 1: Choose hyperparameters that work best on the training data

Train

BAD: remember the over-fitting problem in polynomial curve fitting with $M=9$

- Idea 2: Choose hyperparameters that work best on test data

Train

BAD: No idea how algorithm will perform on new data (never do this)

Model Selection

- Idea 3: Split data into train, validation; choose hyperparameters on validation and evaluate on test

Train	Validation	Test

Better: but not useful for small data sets

- Idea 4: Cross-Validation: Split data into folds, try each fold as validation and average the results

Very useful for small data sets, but bad for complex models (models with many hyper-parameters such as neural networks)

run 1

Better for small data sets

