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Remember

o Density Estimation: given a finite set 𝐱1, . . . , 𝐱𝑁 of observations for a random variable

𝐱, the goal is to model the probability distribution 𝑝(𝐱).

o We will assume that the data points are independent and identically distributed (iid).

𝑝 𝐱1, . . . , 𝐱𝑁 =ෑ

𝑛=1

𝑁

𝑝(𝐱𝐧)

Density Estimation

o Parametric

o Non-Parametric

❑ Selecting a common distribution and estimating the parameters for the density function from the data

❑ binomial and multinomial distributions for discrete random variables

❑ Gaussian distribution for continuous random variables.

❑ Parameter estimation procedure: maximum likelihood, Bayesian method

❑ Histograms, Nearest-Neighbours, Kernels



Non-Parametric Density Estimation

o We discussed probability distributions having specific functional forms governed by a

small number of parameters whose values are to be determined from a data set.

o This is called the parametric approach to density modelling or density estimation.

o Limitation: the chosen density might be a poor model of the distribution that generates

the data, which can result in poor predictive performance.

❑ For example, if the process that generates the data is multimodal, then this aspect of the distribution

can never be captured by a Gaussian, which is necessarily unimodal.

o Here, we consider nonparametric approaches to density estimation that make few

assumptions about the form of the distribution.



Histograms

o We focus on the case of a single continuous variable 𝑥.

o Standard histograms simply partition 𝑥 into distinct bins of width Δ and then count the

number 𝑛𝑖 of observations of 𝑥 falling in bin 𝑖.

o The probability value for each bin is given by:

𝑝𝑖 =
𝑛𝑖
𝑁Δ

Figure: Three examples of density estimation  corresponding to three 

different choices of the bin width

❑ Data (50 observations) is drawn from a mixture of two Gaussians 

(Green curve)

❑ Small Δ, spiky density model with structure not in the distribution 

❑ Large Δ, smooth density model without underlying bi-modality 

❑ Best results from intermediate Δ



o Limitations of the histogram approach

❑ Discontinues that are due to the bin edges

Histograms

❑ If we divide each variable in a D-dimensional space into M bins, then the total number of bins will be 𝑀𝐷

(Curse of dimensionality)

[Image from Stanford csn231n slides]



o Let us suppose that observations are being drawn from some unknown probability

density 𝑝(𝐱) in some D-dimensional space, and we wish to estimate the value of 𝑝(𝐱).

Kernel Density Estimators 

o Let us consider a small region ℛ contaning 𝐱.

ℛ

o The probability mass associated with this region is

given by

𝑃 = න
ℛ

𝑝 𝐱 𝑑𝐱

o Now suppose that we have collected a data set

comprising 𝑁 observations drawn from 𝑝(𝐱) .

❑ Each data point has a probability 𝑃 of falling within ℛ

❑ Then for large 𝑁, the total number of points that lie inside ℛ will be

𝐾 ≃ 𝑁𝑃

(*)



Kernel Density Estimators 

❑ If we also assume that the region ℛ is sufficiently small that 𝑝(𝐱) is roughly constant over the region, then

we have
𝑃 ≃ 𝑝 𝐱 𝑉

Where 𝑉 is the volume of ℛ
(**)

❑ Combining (*) and (**), we obtain our density estimate in the form

𝑝 𝐱 =
𝐾

𝑁𝑉

o Either

❑ We can fix 𝑉 and determine 𝐾 from the data (kernel density estimation approach)

❑ Or can fix 𝐾 and determine 𝑉 from the data (K-nearest neighbor approach)



Kernel Density Estimators 

o To start with we take the region ℛ to be a small hypercube centered on the point 𝐱 at

which we wish to determine the probability density.

o To count the number 𝐾 of points falling within ℛ, define the following function

o The function 𝑘(𝐮) is an example of a kernel function, and in this context is also called a

Parzen window.

o The quantity 𝑘(
𝐱 − 𝐱𝑛

ℎ
) will be one if the data point 𝐱𝑛 lies inside a cube of side ℎ

centered on 𝐱, and zero otherwise.

o The total number of data points lying inside this cube will be

𝐾 = ෍

𝑛=1

𝑁

𝑘
𝐱 − 𝐱𝑛

ℎ

o To count the number 𝐾 of points falling within ℛ, define the following function



Kernel Density Estimators 

𝑝 𝐱 =
𝐾

𝑁𝑉
𝐾 = ෍

𝑛=1

𝑁

𝑘
𝐱 − 𝐱𝑛

ℎ

o Then

𝑝 𝐱 =
1

𝑁
෍

𝑛=1

𝑁
1

ℎ𝐷
𝑘
𝐱 − 𝐱𝑛

ℎ

Where V = ℎ𝐷 denotes the volume of a hypercube of side ℎ in D dimensions.

❑ Using the symmetry of the function 𝑘(𝐮), we can interpret this equation, not as a single cube centered

on 𝐱 but as the sum over 𝑁 cubes centered on the 𝑁 data points 𝑥𝑛.

❑ This kernel density estimator will suffer from the discontinuities at the boundaries of the cubes.

❑ We can obtain a smoother density model if we choose a smoother kernel function



Kernel Density Estimators 

o Common Choice: the Gaussian kernel function

𝑝 𝐱 =
1

𝑁
෍

𝑛=1

𝑁
1

2𝜋ℎ2 1/2
exp −

𝐱 − 𝐱𝑛
2

2ℎ2

Where ℎ now denotes the standard deviation of Gaussian components.

o This density model is obtained by placing a Gaussian over each data point and then

adding up the contributions over the whole data set, and then dividing by 𝑁 so that the

density is correctly normalized.



Kernel Density Estimators 

Figure: Three examples of density estimation  corresponding to three 

different choices of ℎ
❑ Data (50 observations) is drawn from a mixture of two Gaussians 

(Green curve)

❑ Small ℎ, noisy density model with structure not in the distribution 

❑ Large Δ, smooth density model without underlying bi-modality 

❑ Best results from intermediate Δ

o We can choose any other kernel function 𝑘(𝐮) subject to the conditions

𝑘 𝐮 ≥ 0,

න𝑘 𝐮 𝑑𝐮 = 1


