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Probability Distributions: Introduction  

o Remember: Probability theory provides a consistent framework for the quantification

and manipulation of uncertainty in data

o Density Estimation: given a finite set 𝐱1, . . . , 𝐱𝑁 of observations for a random variable

𝐱, the goal is to model the probability distribution 𝑝(𝐱).

o We will assume that the data points are independent and identically distributed (iid).

𝑝 𝐱1, . . . , 𝐱𝑁 =ෑ

𝑛=1

𝑁

𝑝(𝐱𝐧)

Density Estimation

o Parametric

o Non-Parametric

❑ Selecting a common distribution and estimating the parameters for the density function from the data

❑ binomial and multinomial distributions for discrete random variables

❑ Gaussian distribution for continuous random variables.

❑ Parameter estimation procedure: maximum likelihood, Bayesian method

❑ Histograms, Nearest-Neighbours, Kernels



Binary Variables 

Bernoulli Distribution

o Consider a single binary random variable 𝑥 ∈ 0,1

𝑝 𝑥 = 1 𝜇 = 𝜇

o For example, 𝑥 might describe the outcome of flipping a coin, with 𝑥 = 1 representing 

‘heads’, and 𝑥 = 0 representing ‘tails’. 

o The probability of 𝑥 = 1 will be denoted by the parameter 0 ≤ 𝜇 ≤ 1 so that: 

o And hence: 

𝑝 𝑥 = 0 𝜇 = 1 − 𝜇

o Therefore, the probability distribution over 𝑥 can be written in the form: 

Bern 𝑥 𝜇 = 𝜇𝑥 1 − 𝜇 1−𝑥



Binary Variables 

Bernoulli Distribution

𝔼 𝑥 =෍

𝑥

𝑥𝑝 𝑥

=෍

𝑥

𝑥Bern(𝑥|𝜇) = 0 × Bern 𝑥 = 0 𝜇 + 1 × Bern 𝑥 = 1 𝜇 = 𝜇

𝑣𝑎𝑟 𝑥 = 𝔼 𝑥 − 𝔼 𝑥 2 = 𝔼 𝑥 − 𝜇 2 =෍

𝑥

𝑥 − 𝜇 2𝑝 𝑥

= 0 − 𝜇 2Bern 𝑥 = 0 𝜇 + 1 − 𝜇 2Bern 𝑥 = 1 𝜇

= 𝜇2 1 − 𝜇 + 1 − 𝜇 2𝜇 = 𝜇 1 − 𝜇



Binary Variables 

Bernoulli Distribution

o Now suppose we have a data set 𝒟 = 𝑥1, … , 𝑥𝑁 of observed values of 𝑥

o We know that 𝒟 is derived from a Bernoulli distribution

o But, we do not know the parameter 𝜇

o So, we want to estimate 𝜇 using 𝒟

o The maximum likelihood approach:

𝜇𝑀𝐿 = argmax
𝜇

𝑝 𝒟 𝜇 = argmax
𝜇

ෑ

𝑛=1

𝑁

𝑝 𝑥𝑛 𝜇 = argmax
𝜇

ෑ

𝑛=1

𝑁

𝜇𝑥𝑛 1 − 𝜇 1−𝑥𝑛

= argmax
𝜇

ln ෑ

𝑛=1

𝑁

𝜇𝑥𝑛 1 − 𝜇 1−𝑥𝑛

= argmax
𝜇

෍

𝑛=1

𝑁

𝑥𝑛 ln 𝜇 + 1 − 𝑥𝑛 ln 1 − 𝜇

𝑓(𝜇)

𝜕𝑓

𝜕𝜇
= 0

𝜇𝑀𝐿 =
1

𝑁
෍

𝑛=1

𝑁

𝑥𝑛 =
𝑚

𝑁

the number of

observations of

x = 1



Binary Variables 

Bernoulli Distribution

o Now suppose we flip a coin, say, 3 times and happen to observe 3 heads.

o In fact this is an extreme example of the over-fitting associated with maximum

likelihood.

o Then 𝑁 = 𝑚 = 3 and 𝜇𝑀𝐿 = 1

o Then the maximum likelihood result would predict that all future observations should

give heads!

o Solution: Bayesian Approach

𝑝 𝜇|𝒟 =
𝑝 𝒟 𝜇 × 𝑝(𝜇)

𝑝 𝐷

Posterior Probability Prior Probability

Likelihood



Binary Variables 

Bernoulli Distribution

o Step1:Likelihood function
𝑝 𝜇|𝒟 =

𝑝 𝒟 𝜇 × 𝑝(𝜇)

𝑝 𝐷

Posterior Probability Prior Probability

Likelihood

𝑝 𝐷 𝜇 =ෑ

𝑛=1

𝑁

𝑝 𝑥𝑛 𝜇 =ෑ

𝑛=1

𝑁

𝜇𝑥𝑛 1 − 𝜇 1−𝑥𝑛 = 𝜇σ𝑛=1
𝑁 𝑥𝑛 1 − 𝜇 𝑁−σ𝑛=1

𝑁 𝑥𝑛 = 𝜇𝑚 1 − 𝜇 𝑁−𝑚

o Step2: Prior Probability

❑ In this step we need to introduce a prior distribution 𝑝(𝜇) over the parameter 𝜇. But how?

❑ Conjugacy: As the likelihood function takes the form of powers of 𝜇 and 1 − 𝜇, then, if we choose a prior

to be proportional to powers of 𝜇 and 1 − 𝜇, then the posterior distribution will have the same functional

form as the prior.

❑ Here we choose a prior called Beta distribution:

𝐵𝑒𝑡𝑎 𝜇 𝑎, 𝑏 =
Γ 𝑎 + 𝑏

Γ 𝑎 Γ b
𝜇𝑎−1 1 − 𝜇 𝑏−1

Γ 𝑥 ≡ න
0

∞

𝑢𝑥−1 𝑒−𝑢𝑑𝑢

Γ 𝑥 + 1 = 𝑥Γ(𝑥)

Γ 1 = 1 Γ 𝑥 = 𝑥!, ∀𝑥 ∈ ℤ

Proof: Homework

𝔼 𝜇 =
𝑎

𝑎 + 𝑏 𝑣𝑎𝑟 𝜇 =
𝑎𝑏

𝑎 + 𝑏 2 𝑎 + 𝑏 + 1



Binary Variables 

Bernoulli Distribution

❑ Plots of 𝐵𝑒𝑡𝑎 𝜇 𝑎, 𝑏 given by for various

values of the hyperparameters a and b.

o Step3: Posterior Probability

𝑝 𝜇|𝑚, 𝑙, 𝑎, 𝑏 =
𝜇𝑚 1 − 𝜇 𝑙 × 𝐵𝑒𝑡𝑎 𝜇 𝑎, 𝑏

0׬
1
𝜇𝑚 1 − 𝜇 𝑙 × 𝐵𝑒𝑡𝑎 𝜇 𝑎, 𝑏 𝑑𝜇

=
Γ 𝑎 + 𝑚 + 𝑏 + 𝑙

Γ 𝑎 + 𝑚 Γ b + l
𝜇𝑎+𝑚−1 1 − 𝜇 𝑏+𝑙−1

o Sequential Learning: The posterior distribution can act as the prior if we subsequently 

observe additional data (applicable for big data).



Binary Variables 

Bernoulli Distribution

o Question: How to predict the outcome of the next trial of 𝑥, given the observed data set 𝒟?

𝑝 𝑥 = 1 𝒟

= න
0

1

𝑝 𝑥 = 1, 𝜇 𝒟 𝑑𝜇

= න
0

1

𝑝 𝑥 = 1 𝜇,𝒟 𝑝 𝜇 𝒟 𝑑𝜇

= න
0

1

𝑝 𝑥 = 1 𝜇 𝑝 𝜇 𝒟 𝑑𝜇

= න
0

1

𝜇𝑝 𝜇 𝒟 𝑑𝜇

= 𝔼 𝜇 𝒟 =
𝑚 + 𝑎

𝑚 + 𝑎 + 𝑙 + 𝑏



Binary Variables 

Binomial Distribution

o The number m of observations of 𝑥 = 1, given that the data set has size 𝑁

Bin 𝑚 𝑁, 𝜇 =
𝑁

𝑚
𝜇𝑚 1 − 𝜇 𝑁−𝑚

o Where 
𝑁

𝑚
≡

𝑁!

𝑁 −𝑚 !𝑚!

𝔼 𝑚 = ෍

𝑚=0

𝑁

𝑚 𝐵𝑖𝑛 𝑚 𝑁, 𝜇 = 𝑁𝜇

𝑣𝑎𝑟 𝑚 = 𝑁𝜇(1 − 𝜇)

Proof: Homework



Binary Variables 

Generalized Bernoulli Distribution

o Often, we encounter discrete variables that can take on one of 𝐾 possible mutually

exclusive states.

𝑥 ∈ 𝑠1, 𝑠2, … , 𝑠𝐾 1-of-K encoding 𝐱 ∈

1, 0, 0,… , 0 𝑇

0, 1, 0,… , 0 𝑇

⋮
0 , 0,0,… , 1 𝑇

o The random vector 𝐱 can be described by 𝐾 binary variables 𝑥1, 𝑥2, … , 𝑥𝐾

𝐱 =

𝑥1
𝑥2
⋮
𝑥𝐾

Such that ෍

𝑘=1

𝐾

𝑥𝑘 = 1
𝑝 𝑥𝑘 = 1 𝜇𝑘 = 𝜇𝑘

෍

𝑘=1

𝐾

𝜇𝑘 = 1
𝑝 𝐱 𝝁 =ෑ

𝑘=1

𝐾

𝜇𝑘
𝑥𝑘 𝝁 =

𝜇1
𝜇2
⋮
𝜇𝐾

𝜇𝑘 ≥ 0,



Binary Variables 

Generalized Bernoulli Distribution

o Now consider a data set 𝒟 of 𝑁 independent observations 𝐱1, 𝐱2, … , 𝐱𝑁.

o So, we want to estimate the vector 𝝁 using 𝒟

o The Maximum Likelihood Approach

𝝁𝑀𝐿 = argmax
𝝁

𝑝 𝒟 𝝁 = argmax
𝝁

ෑ

𝑛=1

𝑁

𝑝(𝐱𝑛|𝝁) = arg max
𝜇1,…,𝜇𝐾

ෑ

𝑛=1

𝑁

ෑ

𝑘=1

𝐾

𝜇𝑘
𝑥𝑛𝑘

= arg max
𝜇1,…,𝜇𝐾

ln ෑ

𝑘=1

𝐾

𝜇𝑘
𝑚𝑘

= arg max
𝜇1,…,𝜇𝐾

ෑ

𝑘=1

𝐾

𝜇𝑘
σ𝑛 𝑥𝑛𝑘 = arg max

𝜇1,…,𝜇𝐾
ෑ

𝑘=1

𝐾

𝜇𝑘
𝑚𝑘

𝑚𝑘 = ෍

𝑛=1

𝑁

𝑥𝑛𝑘

= arg max
𝜇1,…,𝜇𝐾

෍

𝑘=1

𝐾

𝑚𝑘 ln 𝜇𝑘

s.t ෍

𝑘=1

𝐾

𝜇𝑘 = 1

𝜇𝑘
𝑀𝐿 =

𝑚𝑘

𝑁
Lagrange



Binary Variables 

Generalized Bernoulli Distribution

o The Bayesian Approach

𝑝 𝒟 𝝁 =ෑ

𝑘=1

𝐾

𝜇𝑘
𝑚𝑘

𝑝 𝜇|𝒟 =
𝑝 𝒟 𝜇 × 𝑝(𝜇)

𝑝 𝐷

Remember

Conjugacy 
𝑝 𝝁 = Dir(𝝁|𝜶) =

Γ 𝛼0
Γ 𝛼1 …Γ 𝛼𝐾

ෑ

𝑘=1

𝐾

𝜇𝑘
𝛼𝑘−1

(Dirichlet Distribution) 𝛼0 = ෍

𝑘=1

𝐾

𝛼𝑘

Dirichlet Distribution for 𝐾 = 3

𝛼𝑘 = 0.1
𝑝 𝝁|𝒟 = Dir 𝝁|𝜶 +𝐦

𝛼𝑘 = 1 𝛼𝑘 = 10

=
Γ 𝛼0 + 𝑁

Γ 𝛼1 +𝑚1 …Γ 𝛼𝐾 +𝑚𝑁
ෑ

𝑘=1

𝐾

𝜇𝑘
𝛼𝑘+𝑚𝑘−1

𝐦 = 𝑚1, … ,𝑚𝐾
𝑇



Binary Variables 

Multinomial Distribution

o The joint distribution of the quantities 𝑚1, … ,𝑚𝐾, conditioned on the parameters 𝝁 and

on the total number 𝑁 of observations:

Mult 𝑚1, 𝑚2… ,𝑚𝐾 𝝁 =
𝑁

𝑚1𝑚2…𝑚𝐾
ෑ

𝑘=1

𝐾

𝜇𝑘
𝑚𝑘

o Where 

𝑁

𝑚1𝑚2…𝑚𝐾
≡

𝑁!

𝑚1!𝑚2! …𝑚𝐾!

෍

𝑘=1

𝐾

𝑚𝑘 = 𝑁



Gaussian Distribution 



The Gaussian distribution 

o The Gaussian or normal distribution is the most important distribution for continues

variables.

𝒩 𝑥 𝜇, 𝜎2 =
1

2𝜋𝜎2
1
2

exp −
1

2𝜎2
𝑥 − 𝜇 2

o For the case of a single real-valued variable 𝑥, the Gaussian distribution is defined by

❑ 𝜇: mean

❑ 𝜎2: variance

❑ 𝜎: standard deviation

❑
1

𝜎2
: precision

o 𝒩 𝑥 𝜇, 𝜎2 ≥ 0

o ∞−׬
+∞

𝒩 𝑥 𝜇, 𝜎2 =1

𝑝 𝜇 − 𝜎 ≤ 𝑥 ≤ 𝜇 + 𝜎 ≃ 0.68

𝑝 𝜇 − 2𝜎 ≤ 𝑥 ≤ 𝜇 + 2𝜎 ≃ 0.95

𝑝 𝜇 − 3𝜎 ≤ 𝑥 ≤ 𝜇 + 3𝜎 ≃ 0.99



The Gaussian distribution 

o Gaussian distribution over a D-dimensional vector x of

continuous variables

𝒩 𝐱 𝝁, 𝚺 =
1

2𝜋
𝐷
2

1

𝚺
1
2

exp −
1

2
𝐱 − 𝛍 𝑇𝚺−1 𝐱 − 𝛍

❑ 𝝁: a 𝐷 × 1 mean vector

❑ 𝚺: a 𝐷 × 𝐷 covariance matrix

❑ |𝚺|: The determinant of 𝚺



The Central Limit Theorem 

o Mean of a set of random variables, which is of course itself a random variable, has a

distribution that becomes increasingly Gaussian as the number of terms in the sum

increases



Prerequisites …

Eigenvectors and Eigenvalues

o For a square matrix 𝐀 of size 𝑀 ×𝑀, the eigenvector equation is defined by

𝐀𝐮i = 𝜆𝑖𝒖𝒊 , 𝑖 = 1, … ,𝑀

𝑢𝑖: Eigenvector 𝜆𝑖: Eigenvalue

o Characteristic Equation:

𝐀 − 𝜆𝑖𝐈 = 0

o Example:

𝐀 =
2 3
2 1

𝐮𝟏 =
3
2
, 𝜆1 = 4

𝐮𝟐 =
−1
1

, 𝜆1 = −1



Prerequisites …

Eigenvectors and Eigenvalues

o For most applications we normalize the eigenvectors (i.e., transform them such that

their length is equal to one)

𝐮𝑖𝐮𝑖
𝑇 = 1

o Example:

𝐀 =
2 3
2 1

𝐮𝟏 =
3
2
, 𝜆1 = 4

𝐮𝟐 =
−1
1

, 𝜆1 = −1

o To normalize, we simply divide 𝐮𝑖 by its length 𝐮𝑖

Normalized eigenvectors
|𝐮𝟏| = 32 + 22 = 13

|𝐮𝟐| = −12 + 12 = 2

𝐮𝟏 =
3/ 13

2/ 13
=

0.8331
0.5547

𝐮𝟐 =
−1/ 2

1/ 2
=

−0.7071
0.7071



Prerequisites …

Eigenvectors and Eigenvalues

o We can re-write the eigenvector equation in matrix form:

𝐀𝐮i = 𝜆𝑖𝒖𝒊 𝐀𝐔 = 𝐔𝚲

𝐔 = 𝐮1 𝐮𝑀… 𝚲 =

𝜆1

𝜆𝑀

Matrix Form
𝐀 = 𝐔𝚲𝐔−𝟏Eigen Decomposition 

Diagonalization 
𝐔−𝟏𝐀𝐔 = 𝚲

𝐀𝐮i = 𝜆𝑖𝒖𝒊 ⇒ 𝐀−1𝐀𝐮i = 𝐀−1𝜆𝑖𝒖𝒊 ⇒ 𝐮i = 𝜆𝑖𝐀
−1𝐮𝑖 ⇒

1

𝜆𝑖
𝐮i = 𝐀−1𝐮𝑖



Prerequisites …

Eigenvectors and Eigenvalues

o If 𝐀 is a real symmetric matrix, then its eigenvalues are real and can be chosen to form

orthonormal set, so that

𝐮𝑖
𝑇𝐮𝑗 = ቊ

1 , if 𝑖 = 𝑗
0 , otherwise

Proof: Homework

o Or

𝐔𝑇𝐔 = 𝐈 ⇒ 𝐔T𝐔𝐔−1 = 𝐔−1 = 𝐔T

o Then

☺

𝐀 = 𝐔𝚲𝐔−1 = 𝐔𝚲𝐔T =෍

𝑖=1

𝑀

𝜆𝑖𝐮𝑖𝐮𝑖
𝑇 A very nice property ☺

𝐀−1 = 𝐔𝚲−1𝐔−1 = 𝐔𝚲−1 𝐔T=෍

𝒊=𝟏

𝑀
1

𝜆𝑖
𝐮𝑖𝐮𝑖

𝑇 Another nice property ☺



Prerequisites …

Eigenvectors and Eigenvalues

o The rank of matrix 𝐀 is equal to the number of nonzero eigenvalues.

o A matrix 𝐀 is called positive definite if its eigenvalues are strictly positive.

o A matrix 𝐀 is called positive semidefinite if its eigenvalues are nonnegative.

o Generally the covariance matrix for the Gaussian distribution (𝚺) is symmetric and

positive definite.

o The product of the eigenvalues of 𝐀 is the same as 𝐀 . Therefore, 𝐀 is invertible if and

only if it does not have a zero eigenvalue (its rank equals 𝑀)



Prerequisites …

Mahalanobis Distance

o The Euclidean distance of a point from the mean (example for a 2D variable):

𝑥 − ҧ𝑥 2 + 𝑦 − ത𝑦 2

𝑥

𝑦



Prerequisites …

Mahalanobis Distance

o However, Euclidean distance has limitations in real datasets, which often have some

degree of covariance

𝑥

𝑦



Prerequisites …

Mahalanobis Distance

o The idea of Mahalanobis distance is to remove the covariance by treating each eigenvector

as a new axis, shrink the axis by 𝜆𝑖, then calculate distance between points

𝑥

𝑦

𝑫𝟐 = 𝒙 − ഥ𝒙 𝑻𝑺−𝟏 𝒙 − ഥ𝒙

Data mean vector

Data covariance matrix



Prerequisites …

Jacobian Factor
o Under a nonlinear change of variable, a probability density transforms differently from a

simple function, due to the Jacobian factor.

o For instance, if we consider a change of variables 𝑥 = 𝑔(𝑦), then a function 𝑓(𝑥)

becomes ℎ 𝑦 = 𝑓 𝑔 𝑦

o Now consider a probability density 𝑝𝑥 𝑥

❑ Observations falling in the range 𝑥, 𝑥 + 𝛿𝑥 have probability 𝑝𝑥 𝑥 𝛿𝑥

❑ By transforming them, we make them fall in the range 𝑦, 𝑦 + 𝛿𝑦

❑ Observations falling in the range 𝑦, 𝑦 + 𝛿𝑦 have probability 𝑝𝑦 𝑦 𝛿𝑦

𝑝𝑥 𝑥 𝛿𝑥 = 𝑝𝑦 𝑦 𝛿𝑦 𝑝𝑦 𝑦 = 𝑝𝑥 𝑥
𝑑𝑥

𝑑𝑦
= 𝑝𝑥 𝑥

𝑑𝑔 𝑦

𝑑𝑦
= 𝑝𝑥 𝑥 𝑔′ 𝑦

o In the case of multivariate probabilities, in going from 𝐱 to 𝐲 coordinate system, we have:

𝑝 𝐲 = 𝑝 𝐱 𝐉 𝐉ij =
𝜕𝐱𝑖
𝜕𝐲𝑗

Where 



o The geometric form of the Gaussian distribution

Δ2 = 𝐱 − 𝛍 𝑇𝚺−1 𝐱 − 𝛍

The Gaussian distribution 

𝒩 𝐱 𝝁, 𝚺 =
1

2𝜋
𝐷
2

1

𝚺
1
2

exp −
1

2
𝐱 − 𝛍 𝑇𝚺−1 𝐱 − 𝛍

❑ The Gaussian distribution depends on 𝐱 is through the quadratic form

❑ The quantity ∆ is the Mahalanobis distance from 𝝁 to 𝐱

❑ This quantity reduces to the Euclidean distance when 𝚺 = 𝐈

❑ The Gaussian distribution will be constant on surfaces in x-space for which Δ2 is constant.



o Consider the eigenvector equation for 𝚺 (this matrix is real symmetric)

The Gaussian distribution 

❑ Eigenvectors form an orthonormal set

𝚺𝐮𝑖 = 𝜆𝑖𝐮𝑖

𝐮𝑖
𝑇𝐮𝑗 = ቊ

1 , if 𝑖 = 𝑗
0 , otherwise

❑ 𝚺 can be expressed as an expansion of its

eigenvectors
𝚺 =෍

𝑖=1

D

𝜆𝑖𝐮𝑖𝐮𝑖
𝑇

, i = 1,… , 𝐷

❑ The inverse covariance matrix can be expressed

as
𝚺−1 =෍

𝑖=1

D
1

𝜆𝑖
𝐮𝑖𝐮𝑖

𝑇



o By substituting the inverse covariance matrix into the quadratic form Δ2

The Gaussian distribution 

Δ2 = 𝐱 − 𝛍 𝑇𝚺−1 𝐱 − 𝛍 = 𝐱 − 𝛍 𝑇 ෍

𝑖=1

D
1

𝜆𝑖
𝐮𝑖𝐮𝑖

𝑇 𝐱 − 𝛍 =෍

𝑖=1

D
𝐱 − 𝛍 𝑇𝐮𝑖𝐮𝑖

𝑇 𝐱 − 𝛍

𝜆𝑖

=෍

𝑖=1

D
y𝑖
2

𝜆𝑖
With y𝑖 = 𝐮𝑖

𝑇(𝐱 − 𝛍)

o Forming the vector 𝐲 = 𝑦1, … , 𝑦𝐷
𝑇 we have:

𝐲 = 𝐔(𝐱 − 𝛍)

o 𝐔 is an orthogonal matrix whose rows are 𝐮𝑖
𝑇 (i.e., 𝐔𝐔𝑇 = 𝐈 and 𝐔𝑇𝐔 = 𝐈)



The Gaussian distribution 

o We can interpret 𝑦𝑖 as a new coordinate system defined by the orthonormal vectors 𝐮𝑖
that are shifted and rotated with respect to the original 𝑥𝑖 coordinates.

o The quadratic form, and hence the Gaussian density,

will be constant on surfaces for which Δ2

= σ𝑖=1
D y𝑖

2

𝜆𝑖
is constant.

o For positive 𝜆𝑖, the surfaces are ellipsoids

❑ Centered in 𝝁 and axis oriented along 𝐮𝑖.

❑ The scaling factor in the directions of the axis are 𝜆
𝑖

1

2



The Gaussian distribution 

o Now consider the form of the Gaussian distribution in the new coordinate system defined

by the 𝑦𝑖.

o In going from the 𝐱 to the y coordinate system, we have a Jacobian matrix 𝐉

𝐉ij =
𝜕xi
𝜕yj

= 𝐔ij
T

𝐲 = 𝐔(𝐱 − 𝛍)

⇒ 𝐱 = 𝐔−𝟏𝐲 + 𝝁 = 𝐔𝑇𝐲 + 𝝁

o Using the orthonormality property of the matrix 𝐔:

𝐉 2 = 𝐔𝑇 2 = 𝐔𝑇 𝐔𝑇 = 𝐔𝑇 𝐔 = 𝐔𝑇𝐔 = 𝐈 = 1 ⟹ 𝐉 = 1

o Moreover 

Σ =ෑ

𝑗=1

𝐷

𝜆𝑗 ⟹ Σ
1
2 =ෑ

𝑗=1

𝐷

𝜆
𝑗

1
2



The Gaussian distribution 

o Thus in the 𝑦𝑗 coordinate system, the Gaussian distribution takes the form

p 𝐲 = p 𝐱 𝐉 = p(𝐱)

⟹ p 𝐲 =
1

2𝜋
𝐷
2

1

𝚺
1
2

exp −
1

2
Δ2

Δ2=෍

𝑖=1

D
y𝑖
2

𝜆𝑖
𝑎𝑛𝑑 Σ

1
2=ෑ

𝑗=1

𝐷

𝜆
𝑗

1
2

p 𝐲 =
1

2𝜋
𝐷
2

1

ς𝑗=1
𝐷 𝜆

𝑗

1
2

exp −
1

2
෍

𝑖=1

D
y𝑖
2

𝜆𝑖

=
1

ς𝑗=1
𝐷 2𝜋

𝐷
2𝜆

𝑗

1
2

exp −
1

2
෍

𝑖=1

D
y𝑖
2

𝜆𝑖
=ෑ

𝑗=1

𝐷
1

2𝜋𝜆𝑗
𝐷/2

exp −
y𝑖
2

2𝜆𝑖

o Therefore 𝑝 𝐲 is the product of D independent univariate Gaussian distributions



The Gaussian distribution 

❑ a) General Σ

❑ b) Diagonal Σ

❑ c) Σ = 𝜎2𝐈

𝐷(𝐷+3)

2
parameters

2𝐷 parameters

𝐷 + 1 parameters



Conditional Gaussian distribution 

Property 1 of the Gaussian Distribution: If two sets of variables are jointly Gaussian, then

the conditional distribution of one set conditioned on the other is again Gaussian.

𝑝 𝐱, 𝐲 = 𝒩 𝐱, 𝐲 |𝛍 𝐱,𝐲 , 𝚺(𝐱,𝐲) ⟹ 𝑝 𝐱 𝐲 = 𝒩 𝐱|𝐲 |𝛍𝐱|𝐲 , 𝚺𝐱|𝐲

o Suppose 𝐱 is a D-dimensional vector with Gaussian distribution 𝒩(𝐱|𝛍, 𝚺)

❑ we partition 𝐱 into two disjoint subsets 𝐱𝑎 and 𝐱𝑏.

❑ Without loss of generality, we can take 𝐱𝑎 to form the first 𝑀 components of 𝐱, with 𝐱𝑏 comprising the

remaining D −M components,

❑ Then

𝐱 = 𝐱𝑎
𝐱𝑏



Conditional Gaussian distribution 

o We also define corresponding partitions of

𝝁 = 𝝁𝑎
𝝁𝑏

❑ the mean vector 𝝁 given by ❑ The covariance matrix 𝚺 =
𝚺𝑎𝑎 𝚺𝑎𝑏
𝚺𝑏𝑎 𝚺𝑏𝑏

❑ Because 𝚺 is symmetric (𝚺 = 𝚺T) then 𝚺𝑎𝑎 and 𝚺𝑏𝑏 are also symmetric and 𝚺𝑎𝑏 = 𝚺𝑏𝑎
𝑇

o In many situations, it is convenient to work with the precision matrix: Λ = Σ−1

❑ The corresponding partition for 𝚲: 𝚲 =
𝚲𝑎𝑎 𝚲𝑎𝑏
𝚲𝑏𝑎 𝚲𝑏𝑏

❑ Because the inverse of a symmetric matrix is also symmetric then 𝚲𝑎𝑎 and 𝚲𝑏𝑏 are also symmetric and

𝚲𝑎𝑏 = 𝚲𝑏𝑎
𝑇

❑ It should be stressed that, for instance, 𝚲𝑎𝑎 is not simply given by the inverse of 𝚺𝑎𝑎.



Conditional Gaussian distribution 

o We have

𝑝 𝐱 = 𝑝 𝐱𝑎 , 𝐱𝑏 = 𝒩(𝐱|𝛍, 𝚺)

⟹ 𝑝 𝐱𝑎|𝐱𝑏 =
𝑝 𝐱𝑎 , 𝐱𝑏
𝑝 𝐱𝑏

=
𝑝 𝐱𝑎 , 𝐱𝑏

∞−׬
+∞

𝑝 𝐱𝑎 , 𝐱𝑏 𝑑𝐱𝑎

Not an easy approach 


Better approach (Analytical Method):

Δ2 = 𝐱 − 𝛍 𝑇𝚺−1 𝐱 − 𝛍

❑ The Gaussian distribution depends on 𝐱 is through the quadratic form

o Remember

o Therefore, to show that 𝑝 𝐱𝑎|𝐱𝑏 is Gaussian, we need to proof that 𝑝 𝐱𝑎|𝐱𝑏 has a

similar quadratic form with respect to 𝐱𝑎.



Conditional Gaussian distribution 

o We have

Δ2 = 𝐱 − 𝛍 𝑇𝚺−1 𝐱 − 𝛍

=
𝐱𝑎
𝐱𝑏

−
𝝁𝑎
𝝁𝑏

𝑇
𝚲𝑎𝑎 𝚲𝑎𝑏
𝚲𝑏𝑎 𝚲𝑏𝑏

𝐱𝑎
𝐱𝑏

−
𝝁𝑎
𝝁𝑏

= −
1

2
𝐱𝑎 − 𝝁𝑎

𝑇𝚲𝑎𝑎 𝐱𝑎 − 𝝁𝑎 −
1

2
𝐱𝑎 − 𝝁𝑎

𝑇𝚲𝑎𝒃 𝐱𝒃 − 𝝁𝒃

−
1

2
𝐱𝒃 − 𝝁𝒃

𝑇𝚲𝑏𝑎 𝐱𝑎 − 𝝁𝑎 −
1

2
𝐱𝑏 − 𝝁𝑏

𝑇𝚲𝒃𝒃 𝐱𝒃 − 𝝁𝒃

o We see that as a function of 𝐱𝑎, this is a quadratic form, and hence the corresponding

conditional distribution 𝑝 𝐱𝑎|𝐱𝑏 will be Gaussian.



Conditional Gaussian distribution 

o Question: How to find 𝛍𝐱𝑎|𝐱𝑏 and 𝚺𝐱𝑎|𝐱𝑏 for 𝑝 𝐱𝑎|𝐱𝑏 ?

Δ2 = −
1

2
𝐱𝑎 − 𝝁𝑎

𝑇𝚲𝑎𝑎 𝐱𝑎 − 𝝁𝑎 −
1

2
𝐱𝑎 − 𝝁𝑎

𝑇𝚲𝑎𝒃 𝐱𝒃 − 𝝁𝒃

−
1

2
𝐱𝒃 − 𝝁𝒃

𝑇𝚲𝑏𝑎 𝐱𝑎 − 𝝁𝑎 −
1

2
𝐱𝑏 − 𝝁𝑏

𝑇𝚲𝒃𝒃 𝐱𝒃 − 𝝁𝒃

❑ For a general Gaussian distribution 𝒩 𝐱|𝝁, 𝚺 , the exponent can be written as:

o Answer: Using an approach called Completing the Square

𝐱 − 𝛍 𝑇𝚺−1 𝐱 − 𝛍 = −
1

2
𝐱T𝚺−1𝐱 + 𝐱T𝚺−1𝝁 + const

❑ For 𝑝 𝐱𝑎|𝐱𝑏 , we have:

❑ If we pick out all terms that are second order in 𝐱𝑎, we have

−
1

2
𝐱𝑎
T𝚲𝑎𝑎𝐱𝑎 𝚺𝐱𝑎|𝐱𝑏

−𝟏 = 𝚲𝑎𝑎 ⟹ 𝚺𝐱𝑎|𝐱𝑏 = 𝚲𝑎𝑎
−1



Conditional Gaussian distribution 

Δ2 = −
1

2
𝐱𝑎 − 𝝁𝑎

𝑇𝚲𝑎𝑎 𝐱𝑎 − 𝝁𝑎 −
1

2
𝐱𝑎 − 𝝁𝑎

𝑇𝚲𝑎𝒃 𝐱𝒃 − 𝝁𝒃

−
1

2
𝐱𝒃 − 𝝁𝒃

𝑇𝚲𝑏𝑎 𝐱𝑎 − 𝝁𝑎 −
1

2
𝐱𝑏 − 𝝁𝑏

𝑇𝚲𝒃𝒃 𝐱𝒃 − 𝝁𝒃

❑ For 𝑝 𝐱𝑎|𝐱𝑏 , we have:

❑ If we pick out all terms that are linear in 𝐱𝑎, we have

𝐱𝑎
T 𝚲𝑎𝑎𝝁𝑎 − 𝚲𝑎𝒃 𝐱𝑏 − 𝝁𝑏 = 𝐱a

T𝚺𝐱𝑎|𝐱𝑏
−1 𝝁𝐱𝑎|𝐱𝑏 𝝁𝐱𝑎|𝐱𝑏 = 𝚺𝐱𝑎|𝐱𝑏 𝚲𝑎𝑎𝝁𝑎 − 𝚲𝑎𝒃 𝐱𝑏 − 𝝁𝑏

= 𝝁𝑎 − 𝚲𝑎𝑎
−1𝚲𝑎𝒃 𝐱𝑏 − 𝝁𝑏

𝚺𝐱𝑎|𝐱𝑏 = 𝚲𝑎𝑎
−1



Conditional Gaussian distribution 

o Summary: 𝐱 = 𝐱𝑎
𝐱𝑏 𝝁 = 𝝁𝑎

𝝁𝑏
𝚲 =

𝚲𝑎𝑎 𝚲𝑎𝑏
𝚲𝑏𝑎 𝚲𝑏𝑏

𝝁𝐱𝑎|𝐱𝑏 = 𝝁𝑎 − 𝚲𝑎𝑎
−1𝚲𝑎𝒃 𝐱𝑏 − 𝝁𝑏𝚺𝐱𝑎|𝐱𝑏 = 𝚲𝑎𝑎

−1

𝚺 =
𝚺𝑎𝑎 𝚺𝑎𝑏
𝚺𝑏𝑎 𝚺𝑏𝑏

o Question: How to find 𝛍𝐱𝑎|𝐱𝑏 and 𝚺𝐱𝑎|𝐱𝑏 in terms of 𝚺 (not 𝚲)

𝐀 𝐁
𝐂 𝐃

−1

= 𝐌 −𝐌𝐁𝐃−1

−𝐃−1𝐂𝐌 𝐃−1 +𝐃−1𝐂𝐌𝐁𝐃−1

❑ We can use the following identity:

Where 𝐌 = 𝐀 − 𝐁𝐃−𝟏𝐂
−𝟏

❑

𝚺𝑎𝑎 𝚺𝑎𝑏
𝚺𝑏𝑎 𝚺𝑏𝑏

−𝟏

=
𝚲𝑎𝑎 𝚲𝑎𝑏
𝚲𝑏𝑎 𝚲𝑏𝑏

𝚲𝑎𝑎 = 𝚺𝑎𝑎 − 𝚺𝑎𝑏𝚺𝑏𝑏
−𝟏𝚺𝑏𝑎

−𝟏

𝚲𝑎𝒃 = − 𝚺𝑎𝑎 − 𝚺𝑎𝑏𝚺𝑏𝑏
−𝟏𝚺𝑏𝑎

−𝟏
𝚺𝑎𝑏𝚺𝑏𝑏

−1

❑

𝚺𝐱𝑎|𝐱𝑏 = 𝚲𝑎𝑎
−1 = 𝚺𝑎𝑎 − 𝚺𝑎𝑏𝚺𝑏𝑏

−𝟏𝚺𝑏𝑎 𝝁𝐱𝑎|𝐱𝑏 = 𝝁𝑎 + 𝚺𝑎𝑏𝚺𝑏𝑏
−𝟏 𝐱𝑏 − 𝝁𝑏



Marginal Gaussian distribution 

Property 2 of the Gaussian Distribution: If two sets of variables are jointly Gaussian, then

the marginal distributions is again Gaussian.

𝑝 𝐱, 𝐲 = 𝒩 𝐱, 𝐲 |𝛍 𝐱,𝐲 , 𝚺(𝐱,𝐲) ⟹ 𝑝 𝐱 = 𝒩 𝐱 |𝛍𝐱 , 𝚺𝐱

𝐱 = 𝐱𝑎
𝐱𝑏

𝝁 = 𝝁𝑎
𝝁𝑏

𝚲 =
𝚲𝑎𝑎 𝚲𝑎𝑏
𝚲𝑏𝑎 𝚲𝑏𝑏

𝚺 =
𝚺𝑎𝑎 𝚺𝑎𝑏
𝚺𝑏𝑎 𝚺𝑏𝑏

o

o Similar to conditional probability, we can prove that

𝑝 𝐱 = 𝒩 𝐱|𝛍, 𝚺 𝑝 𝐱a = 𝒩 𝐱a|𝛍a, 𝚺aa



Bayes’ Theorem for Gaussian Variables

Property 3 of the Gaussian Distribution: Given a marginal Gaussian distribution for 𝐱 and a

conditional Gaussian distribution for 𝐲 given 𝐱 in the form

𝑝 𝐱 = 𝒩 𝐱|𝝁, 𝚲−1

𝑝 𝐲|𝐱 = 𝒩 𝐲|𝐀𝐱 + 𝐛, 𝐋−1

The joint distribution of 𝐱 and 𝐲 is given by

𝑝 𝐱, 𝐲 = 𝒩
𝐱

𝐲
|

𝝁

𝐀𝝁 + 𝒃
, 𝚲−1 𝚲−1𝐀T

𝐀𝚲−1 𝐋−1 + 𝐀𝚲−1𝐀T

o We find an expression for the joint distribution 𝑝(𝐱, 𝐲).

❑ To do this, we define

𝐳 = 𝐱
𝐲



Bayes’ Theorem for Gaussian Variables

𝑝 𝐳 = 𝑝 𝐱 𝑝 𝐲 𝐱 = 𝒩 𝐱|𝝁, 𝚲−1 ×𝒩 𝐲|𝐀𝐱 + 𝐛, 𝐋−1

❑ Then we have

❑ Considering the log of the joint distribution

ln 𝑝 𝐳 = ln 𝑝 𝐱 + ln 𝑝 𝐲 𝐱

= −
1

2
𝐱 − 𝛍 T𝚲 𝐱 − 𝛍 −

1

2
𝐲 − 𝐀𝐱 − 𝐛 T𝐋 𝐲 − 𝐀𝐱 − 𝐛 + const

❑ As before, we see that this is a quadratic function of the components of 𝐳, and hence 𝑝(𝐳) is Gaussian

distribution.

Remember: Completing the Squares

𝐱 − 𝛍 𝑇𝚺−1 𝐱 − 𝛍 = −
1

2
𝐱T𝚺−1𝐱 + 𝐱T𝚺−1𝝁 + const

❑ To find the precision of this Gaussian, we consider the

second order terms

−
1

2
𝐱T 𝚲 + 𝐀T𝐋𝐀 𝐱 −

1

2
𝐲T𝐋𝐲 +

1

2
𝐲T𝐋𝐀𝐱 +

1

2
𝐱T𝐀T𝐋𝐲

= −
1

2

𝐱

𝐲

T
𝚲 + 𝐀T𝐋𝐀 −𝐀T𝐋
−𝐋𝐀 𝐋

𝐱

𝐲
= −

1

2
𝐳T𝚺𝐳

−1𝐳 𝚺𝐳
−1 = 𝚲 + 𝐀T𝐋𝐀 −𝐀T𝐋

−𝐋𝐀 𝐋



Bayes’ Theorem for Gaussian Variables

𝐀 𝐁
𝐂 𝐃

−1

= 𝐌 −𝐌𝐁𝐃−1

−𝐃−1𝐂𝐌 𝐃−1 +𝐃−1𝐂𝐌𝐁𝐃−1
Remember

❑ Then

𝚺𝐳 =
𝚲 + 𝐀T𝐋𝐀 −𝐀T𝐋
−𝐋𝐀 𝐋

−1

= 𝚲−1 𝚲−1𝐀T

𝐀𝚲−1 𝐋−1 + 𝐀𝚲−1𝐀T

Where 𝐌 = 𝐀 − 𝐁𝐃−𝟏𝐂
−𝟏

Remember: Completing the Squares

𝐱 − 𝛍 𝑇𝚺−1 𝐱 − 𝛍 = −
1

2
𝐱T𝚺−1𝐱 + 𝐱T𝚺−1𝝁 + const

❑ Similarly, we can find the mean of the Gaussian

distribution over z by identifying the linear terms

𝐱T𝚲𝝁 − 𝐱T𝐀T𝐋𝐛 + 𝐲T𝐋𝐛 =
𝐱

𝐲

T
𝚲𝝁 − 𝐀T𝐋𝐛

𝐋𝐛
= 𝐳T𝚺𝐳

−1𝝁𝐳

𝝁𝐳 = 𝚺𝐳
𝚲𝝁 − 𝐀T𝐋𝐛

𝐋𝐛
= 𝚲−1 𝚲−1𝐀T

𝐀𝚲−1 𝐋−1 + 𝐀𝚲−1𝐀T
𝚲𝝁 − 𝐀T𝐋𝐛

𝐋𝐛
=

𝝁

𝐀𝝁 + 𝒃



Bayes’ Theorem for Gaussian Variables

Property 4 of the Gaussian Distribution: Given a marginal Gaussian distribution for 𝐱 and a

conditional Gaussian distribution for 𝐲 given 𝐱 in the form

𝑝 𝐱 = 𝒩 𝐱|𝝁, 𝚲−1

𝑝 𝐲|𝐱 = 𝒩 𝐲|𝐀𝐱 + 𝐛, 𝐋−1

The marginal distribution of y is given by

𝑝 𝐲 = 𝒩 𝐲|𝐀𝝁 + 𝐛, 𝐋−1 + 𝐀𝚲−1𝐀T

o It is obvious from properties 2 and 3.

𝐱 = 𝐱𝑎
𝐱𝑏

𝝁 = 𝝁𝑎
𝝁𝑏

𝚲 =
𝚲𝑎𝑎 𝚲𝑎𝑏
𝚲𝑏𝑎 𝚲𝑏𝑏

𝚺 =
𝚺𝑎𝑎 𝚺𝑎𝑏
𝚺𝑏𝑎 𝚺𝑏𝑏

𝑝 𝐱 = 𝒩 𝐱|𝛍, 𝚺 ⟹ 𝑝 𝐱a = 𝒩 𝐱a|𝛍a, 𝚺aa

Remember



Bayes’ Theorem for Gaussian Variables

Property 5 of the Gaussian Distribution: Given a marginal Gaussian distribution for 𝐱 and a

conditional Gaussian distribution for 𝐲 given 𝐱 in the form

𝑝 𝐱 = 𝒩 𝐱|𝝁, 𝚲−1

𝑝 𝐲|𝐱 = 𝒩 𝐲|𝐀𝐱 + 𝐛, 𝐋−1

The conditional distribution of 𝐱 given y is

𝑝 𝐱|𝐲 = 𝒩 𝐱|𝚺 𝐀T𝐋 𝐲 − 𝐛 + 𝚲𝝁 , 𝚺

o It is obvious from properties 1 and 3.

𝐱 = 𝐱𝑎
𝐱𝑏

𝝁 = 𝝁𝑎
𝝁𝑏

𝚲 =
𝚲𝑎𝑎 𝚲𝑎𝑏
𝚲𝑏𝑎 𝚲𝑏𝑏

𝚺 =
𝚺𝑎𝑎 𝚺𝑎𝑏
𝚺𝑏𝑎 𝚺𝑏𝑏

𝑝 𝐱 = 𝒩 𝐱|𝛍, 𝚺 ⟹ 𝑝 𝐱a|𝐱𝐛 = 𝒩 𝐱a|𝝁𝑎 − 𝚲𝑎𝑎
−1𝚲𝑎𝒃 𝐱𝑏 − 𝝁𝑏 , 𝚲𝑎𝑎

−1

Remember

Where 𝚺 = 𝚲 + 𝐀T𝐋𝐀
−1



Maximum Likelihood for the Gaussian  

o Given a data set 𝐗 = 𝐱1, . . . , 𝐱𝑁
T in which the observations {𝐱𝑛} are assumed to be

drawn independently from a multivariate Gaussian distribution, we can estimate the

parameters of the distribution by maximum likelihood.

𝛍𝑀𝐿 , 𝚺ML = argmax
𝛍,𝚺

𝑝 𝐗 𝛍, 𝚺 = argmax
𝛍,𝚺

ෑ

𝑛=1

𝑁

𝑝 𝐱𝑖 𝛍, 𝚺

= argmax
𝛍,𝚺

ෑ

𝑛=1

𝑁
1

2𝜋
𝐷
2

1

𝚺
1
2

exp −
1

2
𝐱𝐢 − 𝛍 𝑇𝚺−1 𝐱𝐢 − 𝛍

= argmax
𝛍,𝚺

lnෑ

𝑛=1

𝑁
1

2𝜋
𝐷
2

1

𝚺
1
2

exp −
1

2
𝐱𝐢 − 𝛍 𝑇𝚺−1 𝐱𝐢 − 𝛍

= argmax
𝛍,𝚺

−
ND

2
ln 2𝜋 −

𝑁

2
ln 𝚺 −

1

2
෍

𝑛=1

𝑁

𝐱𝑛 − 𝛍 𝑇𝚺−1 𝐱𝑛 − 𝛍

Proof: Homework

𝛍𝑀𝐿 =
1

𝑁
෍

𝑛=1

𝑁

𝐱𝑛

𝚺𝑀𝐿 =
1

𝑁
෍

𝑛=1

𝑁

𝐱𝑛 − 𝛍𝑀𝐿 𝐱𝑛 − 𝛍𝑀𝐿
T



Maximum Likelihood for the Gaussian  

o In the case of 𝐷 = 1 (univariate Gaussian distribution):

𝜇𝑀𝐿 =
1

𝑁
෍

𝑛=1

𝑁

𝑥𝑛 𝜎𝑀𝐿
2 =

1

𝑁
෍

𝑛=1

𝑁

𝑥𝑛 − 𝜇𝑀𝐿
2

o Question: Are 𝛍𝑀𝐿 and 𝚺𝑀𝐿 good estimations for 𝛍 and 𝚺?

𝔼 ො𝛼 = 𝛼

❑ A good estimation ො𝛼 for parameter 𝛼 should be unbiased to the data set

❑ For the cases of 𝛍𝑀𝐿and 𝚺𝑀𝐿we have:

𝔼 𝝁𝑀𝐿 = 𝝁 𝔼 𝚺𝑀𝐿 =
𝑁 − 1

𝑁
𝚺

☺ 

෩𝚺 =
𝑁

𝑁 − 1
𝚺𝑀𝐿 =

1

𝑁 − 1
෍

𝑛=1

𝑁

𝐱𝑛 − 𝛍𝑀𝐿 𝐱𝑛 − 𝛍𝑀𝐿
T

o A better (unbiased) estimation for 𝜎2



Bayesian Inference for the Gaussian   

o The maximum likelihood framework gave point estimates for the parameters 𝝁 and Σ.

Now we develop a Bayesian treatment by introducing prior distributions over these

parameters.

o We will consider the following cases

❑ The variance is known, and we consider the task of inferring the mean

❑ The mean is known, and we consider the task of inferring the variance



Bayesian Inference for the Gaussian   

o Case 1: The variance is known, and we consider the task of inferring the mean

❑ Let us begin with a simple example in which we consider a single Gaussian random variable 𝑥 (D = 1) .

❑ We shall suppose that the variance 𝜎2 is known, and we consider the task of inferring the mean 𝜇 given a

set of 𝑁 observations 𝐗 = 𝑥1, … , 𝑥𝑁 .

❑ The likelihood function:

𝑝 𝜇|𝒟 =
𝑝 𝒟 𝜇 × 𝑝(𝜇)

𝑝 𝐷

Remember

𝑝 𝐗 𝜇 =ෑ

𝑛=1

𝑁

𝑝 𝑥𝑛 𝜇 =
1

2𝜋𝜎2
𝑁
2

exp −
1

2𝜎2
෍

𝑛=1

𝑁

𝑥𝑛 − 𝜇 2

❑ The likelihood function takes the form of the exponential of a quadratic form in 𝜇. If we choose a

Gaussian prior 𝑝 𝜇 , it will be a conjugate distribution for the likelihood function.

❑ The posterior is a product of two exponentials of quadratic functions of 𝜇 and hence will also be

Gaussian.



Bayesian Inference for the Gaussian   

❑ We take our prior distribution to be

𝑝 𝜇 = 𝒩 𝜇 𝜇0, 𝜎0
2

❑ The posterior distribution is given by

𝑝 𝜇|𝐗 ∝ 𝑝 𝐗 𝜇 𝑝(𝜇)

❑ Some manipulations involving completing the square in the exponent allow to show that the posterior

distribution is given by

𝑝 𝜇|𝐗 = 𝒩 𝜇 𝜇𝑁, 𝜎𝑁
2

𝜇𝑁 =
𝜎2

𝑁𝜎0
2 + 𝜎2

𝜇0 +
𝑁𝜎0

2

𝑁𝜎0
2 + 𝜎2

𝜇𝑀𝐿

1

𝜎𝑁
2 =

1

𝜎0
2 +

𝑁

𝜎2

𝜇𝑀𝐿 =
1

𝑁
෍

𝑛=1

𝑁

𝑥𝑛



Bayesian Inference for the Gaussian   

❑ Note that 𝜇𝑁 (the mean of the posterior distribution) is a

compromise between the prior mean (𝜇0) and the maximum

likelihood solution 𝜇𝑀𝐿.

𝜇𝑁 =
𝜎2

𝑁𝜎0
2 + 𝜎2

𝜇0 +
𝑁𝜎0

2

𝑁𝜎0
2 + 𝜎2

𝜇𝑀𝐿
1

𝜎𝑁
2 =

1

𝜎0
2 +

𝑁

𝜎2

➢ If 𝑁 = 0, 𝜇𝑁 reduces to the prior mean.

➢ For 𝑁 → ∞, the posterior mean equals

the maximum likelihood solution.

❑ As we increase the number of observed data points, the

precision steadily increases, corresponding to a posterior

distribution with steadily decreasing variance.

➢ With no observed data points, we have the prior variance

➢ If 𝑁 → ∞ , the variance 𝜎𝑁
2 → 0 and the posterior

distribution becomes infinitely peaked around 𝜇𝑀𝐿

Figure. The data points are generated from a 
Gaussian of mean 0.8 and variance 0.1, and 

the prior is chosen to have mean 0. 



Bayesian Inference for the Gaussian   

o Case 2: The mean is known, and we consider the task of inferring the variance

❑ The likelihood function (It turns out to be most convenient to work with the precision 𝜆 ≡
1

𝜎2
):

𝑝 𝐗 𝜆 =ෑ

𝑛=1

𝑁

𝒩 𝑥𝑛 𝜇, 𝜆
−1 ∝ 𝜆

𝑁
2 exp −

𝜆

2
෍

𝑛=1

𝑁

𝑥𝑛 − 𝜇 2

❑ The corresponding conjugate prior should therefore be proportional to the product of a power of 𝜆 and the

exponential of a linear function of 𝜆.

❑ This corresponds to the gamma distribution which is defined by

Gam 𝜆|𝑎, 𝑏 =
1

Γ 𝑎
𝑏𝑎𝜆𝑎−1 exp −𝑏𝜆 𝔼 𝜆 =

𝑎

𝑏
, 𝑣𝑎𝑟 𝜆 =

𝑎

𝑏2



Bayesian Inference for the Gaussian   

❑ Consider a prior distribution Gam(𝜆|𝑎0, 𝑏0). Multiplying by the likelihood function, we obtain a the

following posterior distribution

𝑝 𝜆 𝐗 ∝ 𝜆𝑎0−1𝜆
𝑁
2 exp −𝑏0𝜆 −

𝜆

2
෍

𝑛=1

𝑁

𝑥𝑛 − 𝜇 2

❑ which we recognize as a gamma distribution of the form Gam(𝜆|𝑎𝑁, 𝑏𝑁)where

𝑎𝑁 = 𝑎0 +
𝑁

2

𝑏𝑁 = 𝑏0 +
1

2
෍

𝑛=1

𝑁

𝑥𝑛 − 𝜇 2 = b0 +
N

2
𝜎𝑀𝐿
2



Mixtures of Gaussians    

o While the Gaussian distribution has some important analytical properties, it suffers from

significant limitations when it comes to modelling real data sets.

Figure: A single Gaussian distribution fitted to the data using maximum

likelihood.

o Note that this distribution fails to capture the two clumps in the data and indeed

places much of its probability mass in the central region between the clumps

where the data are relatively sparse.

Figure: A linear combination of two Gaussians fitted using maximum likelihood

o Such superpositions, formed by taking linear combinations of more basic

distributions such as Gaussians, can be formulated as probabilistic models

known as mixture distributions



Mixtures of Gaussians    

Figure: Example of a Gaussian mixture distribution in one

dimension

o Three Gaussians (blue) and their sum (red)

o We can get very complex densities

o By using a sufficient number of Gaussians, and by adjusting their means and

covariances as well as the coefficients in the linear combination, almost any continuous

density can be approximated to arbitrary accuracy.

o We consider a mixture of 𝐾 Gaussian densities of the form

𝑝 𝐱 = ෍

𝑘=1

𝐾

𝜋𝑘𝒩 𝐱 𝛍𝑘 , 𝚺𝑘



Mixtures of Gaussians    

o We consider a mixture of 𝐾 Gaussian densities of the form

𝑝 𝐱 = ෍

𝑘=1

𝐾

𝜋𝑘𝒩 𝐱 𝛍𝑘 , 𝚺𝑘

❑ The parameters 𝜋𝑘 are called mixing coefficients. ෍

𝑘=1

𝐾

𝜋𝑘 = 10 ≤ 𝜋𝑘 ≤ 1 and

Figure: A mixture of 3 Gaussians in a two-

dimensional space

o (a) Contours of constant density for each

of the mixture components (b) Contours

of the mixture distribution 𝑝(𝐱). (c) A

surface plot of the distribution 𝑝(𝐱).

❑ The parameters 𝜋𝑘 are called mixing coefficients. 0 ≤ 𝜋𝑘 ≤ 1 and


