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o A key concept in data science is that of uncertainty.

Probability Theory

❑ Noise on measurements

❑ Finite size of data sets

o Probability theory provides a consistent framework for the quantification and

manipulation of uncertainty in data

o Probability theory + Decision Theory = Optimal Predictions given all the information

available to us



Probability Theory

𝑝 𝑋 = ෍

𝑌

𝑝(𝑋, 𝑌)

The sum rule

o Let X is random variable with possible values 𝑥1, 𝑥2, … , 𝑥𝑁
o Let Y is random variable with possible values 𝑦1, 𝑦2, … , 𝑦𝑀

o The marginal probability

𝑝 𝑋 = 𝑥𝑖 =෍

𝑗=1

𝑀

𝑝(𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗)

𝑝 𝑌 = 𝑦𝑗 =෍

𝑖=1

𝑁

𝑝(𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗)

o The conditional probability

𝑝 𝑋 = 𝑥𝑖|𝑌 = 𝑦𝑗 =
𝑝 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗

𝑝(𝑌 = 𝑦𝑗)

𝑝 𝑌 = 𝑦𝑗|𝑋 = 𝑥𝑖 =
𝑝 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗

𝑝(𝑋 = 𝑥𝑖)

𝑝 𝑋, 𝑌 = 𝑝 𝑋 𝑌 𝑝 𝑌 = 𝑝 𝑌 𝑋 𝑝(𝑋)

The product rule



Probability Theory

o The Bayes’ Theorem

𝑝 𝑋 = 𝑥𝑖|𝑌 = 𝑦𝑗 =
𝑃 𝑌 = 𝑦𝑗 𝑋 = 𝑥𝑖 𝑃(𝑋 = 𝑥𝑖)

𝑃(𝑌 = 𝑦𝑗)

𝑝 𝑋|𝑌 =
𝑃 𝑌 𝑋 𝑃(𝑋)

𝑃(𝑌)
=
𝑃 𝑌 𝑋 𝑃(𝑋)

σ𝑋 𝑝(𝑋, 𝑌)
=

𝑃 𝑌 𝑋 𝑃(𝑋)

σ𝑋 𝑝 𝑌 𝑋 𝑝(𝑋)

The Bayes’ theorem



o Two boxes: red and blue

Probability Theory

o The red box: 2 apples, 6 oranges

o The blue box: 3 apples, 1 oranges

o Suppose we randomly pick one of the boxes and from that box we

randomly select an item of fruit, and having observed which sort of fruit

it is we replace it in the box from which it came. We could imagine

repeating this process many times.

o Red box 40% - Blue box 60%

o Equally likely to select any of the pieces of fruit in each box

o Random Variables: 

❑ 𝐵: The identity of the box. 𝐵 = 𝑟 (the red box), 𝐵 = 𝑏 (the blue box)

❑ 𝐹: The identity of the fruit.  𝐹 = 𝑎 (the apple), 𝐹 = 𝑜 (orange)



o The available information:

Probability Theory

𝑝 𝐵 = 𝑟 = 0.4 𝑝 𝐵 = 𝑏 = 0.6

𝑝 𝐹 = 𝑎|𝐵 = 𝑟 =
1

4
𝑝 𝐹 = 𝑜|𝐵 = 𝑟 =

3

4

𝑝 𝐹 = 𝑎|𝐵 = 𝑏 =
3

4
𝑝 𝐹 = 𝑜|𝐵 = 𝑏 =

1

4

what is the overall probability that the selection procedure will pick an apple? 𝑝 𝐹 = 𝑎 =?

Using the sum rule: 𝑝 𝐹 =෍

𝐵

𝑝 𝐹, 𝐵 ⇒ 𝑝 𝐹 = 𝑎 = 𝑝 𝐹 = 𝑎, 𝐵 = 𝑟 + 𝑝(𝐹 = 𝑎, 𝐵 = 𝑏)

Using the product rule: 𝑝 𝐹, 𝐵 = 𝑝 𝐹 𝐵 𝑝(𝐵)

⇒ 𝑝 𝐹 = 𝑎 = 𝑝 𝐹 = 𝑎|𝐵 = 𝑟 𝑝(𝐵 = 𝑟) + 𝑝 𝐹 = 𝑎 𝐵 = 𝑏 𝑝(𝐵 = 𝑏)

=
1

4
× 0.4 +

3

4
× 0.6 = 0.55 Find 𝒑 𝑭 = 𝒐 =?



o The available information:

Probability Theory

𝑝 𝐵 = 𝑟 = 0.4 𝑝 𝐵 = 𝑏 = 0.6

𝑝 𝐹 = 𝑎|𝐵 = 𝑟 =
1

4
𝑝 𝐹 = 𝑜|𝐵 = 𝑟 =

3

4

𝑝 𝐹 = 𝑎|𝐵 = 𝑏 =
3

4
𝑝 𝐹 = 𝑜|𝐵 = 𝑏 =

1

4

given that we have chosen an apple, what is the probability that the box we chose was the blue one?

𝑝 𝐵 = 𝑏|𝐹 = 𝑎 =?

Using the Bayes’ theorem: 

Find 𝒑 𝑩 = b|𝑭 = 𝒐 =?

𝑝 𝐵 = 𝑏|𝐹 = 𝑎 =
𝑝 𝐹 = 𝑎 𝐵 = 𝑏 𝑝(𝐵 = 𝑏)

𝑝(𝐹 = 𝑎)

=

3
4
× 0.6

0.55
≈ 0.82



Another Example

Probability Theory

Y

2

1

𝑋

1 2 3 4 5 6 7 8 9

Total number of trials = 60

o 𝑝 𝑋 = 5, 𝑌 = 1 =
5

60

o 𝑝 𝑋 = 3, 𝑌 = 2 = 0

o 𝑝 𝑋 = 6 =?

𝑝 𝑋 = 6 = 𝑝 𝑋 = 6, 𝑌 = 1 + 𝑝 𝑋 = 6, 𝑌 = 2 =
3

60
+

5

60
=

8

60

The sum rule

o 𝑝 𝑋 = 6|𝑌 = 1 =
𝑝(𝑋=6,𝑌=1)

𝑝(𝑌=1)
=

3

60
34

60

=
3

34

o 𝑝 𝑌 = 1 =
3+6+8+8+5+3+1+0+0

60
=

34

60



Probability Theory

Y

2

1

𝑋

1 2 3 4 5 6 7 8 9

Probability Distributions (Probability Mass Function (PMF))

𝑝 𝑋, 𝑌 = 𝑝 𝑋 𝑝 𝑌

Independent Variables



Probability Densities 

o We also wish to consider probabilities with respect to continuous variables.   

o However, the PMF does not work for continuous random variables, because for a 

continuous random variable X, 𝑝 𝑋 = 𝑥 = 0, for all 𝑥 ∈ ℝ

o Instead, we define the probability density function (PDF) over a continues variable

𝑝𝑋 𝑥 = lim
𝛿𝑥→0

𝑝 𝑥 ∈ 𝑥, 𝑥 + 𝛿𝑥

𝛿𝑥

o Therefor the probability that x will lie in an 

interval (𝑎, 𝑏) is then given by 

𝑝 𝑥 ∈ 𝑎, 𝑏 = න
𝑎

𝑏

𝑝 𝑥 𝑑𝑥

o Where there is no ambiguity, we simply use 𝑝(𝑥)
instead of 𝑝𝑋 𝑥



Probability Densities 

o The probability density 𝑝(𝑥) must satisfy the two conditions:   

𝑝 𝑥 ≥ 0 න
−∞

+∞

𝑝 𝑥 𝑑𝑥 = 1

o The probability that 𝑥 lies in the interval

(−∞, 𝑧) is given by the cumulative distribution

function (CDF) defined by

𝑃 𝑧 = න
−∞

𝑧

𝑝 𝑥 𝑑𝑥

o Note

𝑝 𝑥 = 𝑃′(𝑥)



Probability Densities 

o The sum and product rules of probability, as well as Bayes’ theorem, apply equally to 

the case of probability densities 

𝑝 𝑥 = න𝑝 𝑥, 𝑦 𝑑𝑦

The sum rule

𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑦 𝑝 𝑦 = 𝑝 𝑦 𝑥 𝑝 𝑥

The product rule

𝑝 𝑥 𝑦 =
𝑝 𝑦 𝑥 𝑝 𝑥

𝑝 𝑦
=
𝑝 𝑦 𝑥 𝑝 𝑥

׬ 𝑝 𝑥, 𝑦 𝑑𝑥
=

𝑝 𝑦 𝑥 𝑝 𝑥

׬ 𝑝 𝑦|𝑥 𝑝(𝑥)𝑑𝑥

The Bayes’ theorem



Expectations and Covariances 

o One of the most important operations involving probabilities is that of finding weighted 

averages of functions.

o The average value of function 𝑓(𝑥) under a probability distribution 𝑝(𝑥) is called the

expectation of 𝑓(𝑥) and will be denoted by 𝐸[𝑓]

𝔼[𝑓] =෍

𝑥

𝑝 𝑥 𝑓(𝑥) 𝔼[𝑓] = න𝑝 𝑥 𝑓 𝑥 𝑑𝑥

Discrete Random Variable Continues Random Variable

o Let 𝑋 represent the outcome of an unbiased six-sided dice. Suppose that in a sequence of

ten rolls of the dice, the outcomes are 5, 2, 6, 2, 2, 1, 2, 3, 6, 1. Then calculate the

expected and average values.

𝔼 𝑥 =
1

6
1 + 2 + 3 + 4 + 5 + 6 = 3.5 ത𝑋 =

1

10
5 + 2 + 6 + 2 + 2 + 1 + 2 + 3 + 6 + 1 = 3



o If we are given a finite number N of points drawn from

the probability distribution or probability density, then

the expectation can be approximated as a finite sum over

these points

𝔼 𝑓 ≃
1

𝑁
෍

𝑛=1

𝑁

𝑓(𝑥𝑛)

Expectations and Covariances 

o We can also consider a conditional expectation with respect to a conditional distribution:

𝔼𝑥 𝑓|𝑦 =෍

𝑥

𝑝 𝑥|𝑦 𝑓 𝑥

o Sometimes we will be considering expectations of

functions of several variables, in which case we can use a

subscript to indicate which variable is being averaged

over
𝔼𝑥 𝑓 𝑥, 𝑦 =෍

𝑥

𝑝 𝑥 𝑓 𝑥, 𝑦



Expectations and Covariances 

o The variance of f(x) provides a measure of how much variability there is in f(x) around 

its mean value Type equation here.

𝑣𝑎𝑟[𝑓] = 𝔼 𝑓 𝑥 − 𝔼 𝑓 2

o Expanding out the square, we see that the variance can also be written in terms of the

expectations of 𝑓 𝑥 and 𝑓 𝑥 2

𝑣𝑎𝑟 𝑓 = 𝔼 𝑓2 − 𝔼 𝑓 2 Proof: Homework

o For two random variables 𝑥 and 𝑦, the covariance expresses the extent to which 𝑥 and 𝑦
vary together.

𝑐𝑜𝑣 𝑥, 𝑦 = 𝔼𝑥,𝑦 𝑥 − 𝔼 𝑥 𝑦 − 𝔼 𝑦

= 𝔼𝑥,𝑦 𝑥𝑦 − 𝔼 𝑥 𝔼 𝑦 Proof: Homework



Expectations and Covariances 

o Example

1

8

1

8
0

1

8

2

8

1

8

0
1

8

1

8

𝑥

𝑦

0

1

2

0 1 2 𝑝 𝑥

𝑝 𝑦 1

4

1

2

1

4

1

4

1

2
1

4

𝔼 𝑥 = 0 ×
1

4
+ 1 ×

1

2
+ 2 ×

1

4
= 1

𝔼 𝑦 = 0 ×
1

4
+ 1 ×

1

2
+ 2 ×

1

4
= 1

𝑣𝑎𝑟 𝑥 = 𝔼 𝑥 − 𝔼 𝑥 2 =
1

4
0 − 1 2 +

1

2
1 − 1 2 +

1

4
2 − 1 2

=
1

4
+ 0 +

1

4
=
1

2

𝑣𝑎𝑟 𝑥 = 𝔼 𝑥2 − 𝔼 𝑥 2 = 02 ×
1

4
+ 12 ×

1

2
+ 22 ×

1

4
− 1 2

=
1

2
+ 1 − 1 =

1

2

𝑣𝑎𝑟 𝑦 = 𝔼 𝑦 − 𝔼 𝑦 2 =
1

2



Expectations and Covariances 

o Example

1

8

1

8
0

1

8

2

8

1

8

0
1

8

1

8

𝑥

𝑦

0

1

2

0 1 2 𝑝 𝑥

𝑝 𝑦 1

4

1

2

1

4

1

4

1

2
1

4

𝑐𝑜𝑣 𝑥, 𝑦 = 𝔼𝑥,𝑦 𝑥 − 𝔼 𝑥 𝑦 − 𝔼 𝑦 =෍

𝑥

෍

𝑦

𝑝 𝑥, 𝑦 𝑥 − 1 𝑦 − 1 =

1

8
0 − 1 × 0 − 1 +

1

8
1 − 1 × 0 − 1 + 0 2 − 1 × 0 − 1

+
1

8
0 − 1 × 1 − 1 +

2

8
1 − 1 × 1 − 1 +

1

8
2 − 1 × 1 − 1

+0 0 − 1 × 2 − 1 +
1

8
1 − 1 × 2 − 1 +

1

8
2 − 1 × 2 − 1

=
1

8
+ 0 + 0 + 0 + 0 + 0 + 0 + 0 +

1

8
=
1

4

𝑐𝑜𝑣 𝑥, 𝑦 = 𝔼𝑥,𝑦 𝑥𝑦 − 𝔼 𝑥 𝔼[𝑦]

=෍

𝑥

෍

𝑦

𝑥𝑦 𝑝 𝑥, 𝑦 − 1 = 0 + 0 + 0 + 0 +
2

8
+
2

8
+ 0 +

2

8
+
4

8
− 1 =

1

4



Expectations and Covariances 

Estimating Covariance From Data

𝒙 = 𝑥1, 𝑥2, … , 𝑥𝑁 𝒚 = 𝑦1, 𝑦2, … , 𝑦𝑁

a. Find the sample mean:

𝔼 𝑥 ≃
1

𝑁
෍

𝑛=1

𝑁

𝑥𝑛 𝔼 𝑦 ≃
1

𝑁
෍

𝑛=1

𝑁

𝑦𝑛

b. Calculate 𝑐𝑜𝑣 𝑥, 𝑦 as follows:

𝑐𝑜𝑣 𝑥, 𝑦 =
1

𝑁
𝑥1 − 𝔼 𝑥 𝑥2 − 𝔼 𝑥 … 𝑥𝑁 − 𝔼 𝑥

𝑦1 − 𝔼[𝑦]

𝑦2 − 𝔼[𝑦]
⋮

𝑦𝑁 − 𝔼[𝑦]



Expectations and Covariances 

o In the case of two vectors of random variables 𝒙 and 𝒚, the covariance is a matrix 

𝑐𝑜𝑣 𝒙, 𝒚 = 𝔼𝒙,𝒚 𝒙 − 𝔼 𝒙 𝒚𝑇 − 𝔼 𝒚𝑇 = 𝔼𝒙,𝒚 𝒙𝒚
𝑇 − 𝔼 𝒙 𝔼 𝒚𝑇

𝒙 =

𝑥1
𝑥2
⋮
𝑥𝑛

𝒚 =

𝑦1
𝑦2
⋮
𝑦𝑛

𝑐𝑜𝑣(𝒙, 𝒚) =

𝑐11 𝑐12 … 𝑐1𝑛
𝑐21
⋮

𝑐22
⋮

… 𝑐2𝑛
⋮ ⋮

𝑐𝑛1 𝑐𝑛2 … 𝑐𝑛𝑛

o 𝑐𝑖𝑗 = 𝑐𝑜𝑣 𝑥𝑖 , 𝑦𝑗 = 𝔼 𝑥𝑖 − 𝔼[𝑥𝑖] 𝑦𝑗 − 𝔼[𝑦𝑗]

o 𝑐𝑖𝑗 = 𝑐𝑗𝑖 (the covariance matrix is symmetric) 

o Its diagonal elements are the individual variances: 𝑐𝑖𝑖 = 𝑣𝑎𝑟(𝑥𝑖)



Expectations and Covariances 

Estimating Covariance Matrix From Data
𝒙 =

𝑥11 𝑥12 … 𝑥1𝑁
𝑥21
⋮

𝑥22
⋮

… 𝑥2𝑁
⋮ ⋮

𝑥𝑛1 𝑥𝑛2 … 𝑥𝑛𝑁

𝒚 =

𝑦11 𝑦12 … 𝑦1𝑁
𝑦21
⋮

𝑦22
⋮

… 𝑦2𝑁
⋮ ⋮

𝑦𝑛1 𝑦𝑛2 … 𝑦𝑛𝑁a. Find the sample mean vector:

𝔼[𝒙] =

𝔼[𝑥1] ≃
1

𝑁
෍

𝑛=1

𝑁

𝑥1

𝔼[𝑥2] ≃
1

𝑁
෍

𝑛=1

𝑁

𝑥2

⋮

𝔼[𝑥𝑛] ≃
1

𝑁
෍

𝑛=1

𝑁

𝑥𝑛

b. Calculate 𝑐𝑜𝑣 𝑥, 𝑦 as follows:

𝔼[𝒚] =

𝔼[𝑦1] ≃
1

𝑁
෍

𝑛=1

𝑁

𝑦1

𝔼[𝑦2] ≃
1

𝑁
෍

𝑛=1

𝑁

𝑦2

⋮

𝔼[𝑦𝑛] ≃
1

𝑁
෍

𝑛=1

𝑁

𝑦𝑛

𝑐𝑜𝑣 𝑥, 𝑦 =
1

𝑁

𝑥11 − 𝔼 𝑥1 𝑥12 − 𝔼 𝑥1 … 𝑥1𝑁 − 𝔼 𝑥1
𝑥21 − 𝔼 𝑥2 𝑥22 − 𝔼 𝑥2 … 𝑥2𝑁 − 𝔼 𝑥2

⋮
𝑥𝑛1 − 𝔼 𝑥𝑛 𝑥𝑛2 − 𝔼 𝑥𝑛 … 𝑥𝑛𝑁 − 𝔼 𝑥𝑛

𝑦11 − 𝔼[𝑦1]

𝑦12 − 𝔼[𝑦1]
⋮

𝑦1𝑁 − 𝔼[𝑦1]

𝑦21 − 𝔼[𝑦2]

𝑦22 − 𝔼[𝑦2]
⋮

𝑦2𝑁 − 𝔼[𝑦2]

…

𝑦𝑛1 − 𝔼[𝑦𝑛]

𝑦𝑛2 − 𝔼[𝑦𝑛]
⋮

𝑦𝑛𝑁 − 𝔼[𝑦𝑛]



Bayesian Probability 

o So far, we have viewed probabilities in terms of the frequencies of random, repeatable

events. We shall refer to this as the classical or frequentist interpretation of probability.

o Bayesian probability provides a more general tool for quantification of uncertainty, even

on unrepeatable events.

o Repeatable events: selecting a red or blue box, selecting a fruit from a box

o Unrepeatable events: whether the moon was once in its own orbit around the sun,

whether the Arctic ice cap will have disappeared by the end of the century



Bayesian Probability 

o For example, in the case of fruits problem we know the probability of selecting each box (𝑝 𝐵 = 𝑟
= 0.4 and 𝑝 𝐵 = 𝑏 = 0.6). We call 𝑝 𝐵 the prior probability because it is the probability available

before we observe the identity of the fruit.

𝑝 𝐵|𝐹 =
𝑝 𝐹 𝐵 𝑝(𝐵)

𝑝(𝐹)

o Suppose that we are told that the fruit is an orange (new evidence), then we can use this new evidence to

update our idea of the color box (𝑝 𝐵 𝐹 ). We call 𝑝 𝐵 𝐹 the posterior probability of the box color.

o we can then use Bayes’ theorem to compute the probability 𝑝(𝐵|𝐹 )

Posterior Probability Prior Probability

Likelihood

෍

𝐵

𝑝(𝐹 𝐵 𝑝(𝐵)



Bayesian Probability 

o For the case of polynomial curve fitting, we capture our assumptions about 𝒘, before observing the data,

in the form of a prior probability distribution 𝑝(𝒘).

o The effect of the observed data 𝒟 = 𝑡1, 𝑡2, … , 𝑡𝑁 is expressed through the conditional probability

𝑝 𝒟 𝒘 .

o Then the Bayes’ theorem allows us to evaluate the uncertainty in 𝒘 after we have observed 𝒟 in the form

of the posterior probability 𝑝(𝒘|𝒟).

𝑝 𝒘|𝒟 =
𝑝 𝒟 𝒘 𝑝(𝒘)

𝑝(𝒟)


