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Probability Theory

o A key concept in data science is that of uncertainty.

(J Noise on measurements

[ Finite size of data sets

o Probability theory provides a consistent framework for the quantification and
manipulation of uncertainty in data

o Probability theory + Decision Theory = Optimal Predictions given all the information
available to us



Probability Theory

o Let X is random variable with possible values {x{, x5, ..., Xx }
o LetY is random variable with possible values {y4, y5, ..., Vi }

o The marginal probability

M
p(X =x) = ) p(X =x,Y = y))
=1

N
p(Y =y;) = ZP(X =x, Y =yj)
=1

o The conditional probability

p(X =Xx;, Y = yj)

p(X =x,Y =y;) p(X,Y) =pX|YV)p(Y) = p(Y|X)p(X)
p(X = x;)

p(Y =y|X=x;) =



Probability Theory

o The Bayes’ Theorem

P(Y = y;|X = x;)P(X = x;)
P(Y =yj)

p(X =x|Y =y;) =

P(YIX)P(X) P(YIX)P(X)  P(YIX)P(X)

p(X|Y) =

P(Y) B 2xp(X,Y) _pr(”X)P(X)



Probability Theory

o Two boxes: red and blue

o The red box: 2 apples, 6 oranges O O
o The blue box: 3 apples, 1 oranges O O O O
o Suppose we randomly pick one of the boxes and from that box we
randomly select an item of fruit, and having observed which sort of fruit O O O O O O

it is we replace it in the box from which it came. We could imagine
repeating this process many times.

o Red box 40% - Blue box 60%
o Equally likely to select any of the pieces of fruit in each box

o Random Variables:
U B: The identity of the box. B = r (the red box), B = b (the blue box)
O F: The identity of the fruit. F = a (the apple), F = o (orange)



Probability Theory

o The available information:

p(B=1) =04 p(B = b) = 0.6 O O
OO0 |0
OO0 00O

p(F=alB=r)= p(F=o|B=r1)=

p(F =alB=b) = p(F =0|B=b) =

Sl w |-
N L S oS

what is the overall probability that the selection procedure will pick an apple?  p(F = a) =7
Using the sum rule: p(F) = ZP(F,B) >p(F=a)=p(F=a,B=1r)+p(F =a,B =b)
B

Using the product rule: p(F,B) = p(F|B)p(B)

=p(F =a) =pF =a|lB=r)p(B=r)+pF =alB=Db)p(B=D>b)
1

3



Probability Theory

o The available information:

p(B=1) =04 p(B = b) = 0.6 O O
OO0 |0
OO0 00O

p(F=alB=r)= p(F=o|B=r1)=

Sl w |-
N L S oS

p(F =alB=b) = p(F =0|B=b) =

given that we have chosen an apple, what is the probability that the box we chose was the blue one?

p(B = b|F = a) =?

Using the Bayes’ theorem: (B = b|F = a) = p(F = a|B = b)p(B = b)
p(F=a)
3
) X 0.6

- ~ i = = —
e~ 0.82 Find p(B = b|F = 0) =:




Probability Theory

Another Example Total number of trials = 60 i
Ccy_1y_5 2
o p(X—S,Y—l)—6O
o pX=3Y=2)=0 Y 7]
0O p(X — 6) —4 1
"""""""""""""""""""" 3 5 8 -
p(X—6)_p(X—6Y—1)+p(X—6Y—2)—@+%—% 1 2 3 4 5 6 7 8 9
"""""" Thesumrule | v |

3+6+8+8+5+3+1+0+0 34
60

o p(Y=1)=

p(X=6Y=1) _
p(Y=1)

o pX=6|Y=1)=

/\\/_\



Probability Theory

Probability Distributions (Probability Mass Function (PMF)) -

p(X) (V)

HH Hﬂ B

t 123456789
||

p(X|Y =1)

pX,Y) = p(X)p(Y)




Probability Densities

o We also wish to consider probabilities with respect to continuous variables.

o However, the PMF does not work for continuous random variables, because for a
continuous random variable X, p(X = x) = 0, forall x € R

o Instead, we define the probability density function (PDF) over a continues variable

p(x € (x,x + 5x))

() = Jim == |

o Where there is no ambiguity, we simply use p(x)
instead of py (x)

o Therefor the probability that x will lie in an
interval (a, b) 1s then given by

b
p(x € (a,b)) = f p(x)dx o




Probability Densities

o The probability density p(x) must satisfy the two conditions:

p(x) =0 j_ oop(x)dx =1 t

o The probability that x lies in the interval
(—o0,z) 1s given by the cumulative distribution
function (CDF) defined by

P(z) = f p(x)dx

o Note 0x
p(x) = P'(x)



Probability Densities

o The sum and product rules of probability, as well as Bayes’ theorem, apply equally to
the case of probability densities

p(x) = f p(x,y)dy

p(x,y) =px|y)r(y) = p(yIx)p(x)

p(yIx)p(x) ploplx)  plx)p(x)

plxly) = p(y)  [p(x,y)dx [pllx)p(x)dx




Expectations and Covariances

o One of the most important operations involving probabilities 1s that of finding weighted
averages of functions.

o The average value of function f(x) under a probability distribution p(x) 1s called the
expectation of f(x) and will be denoted by E|[f]

Blf] = Y pG)f () EIf] = | pOOf @

Discrete Random Variable Continues Random Variable

o Let X represent the outcome of an unbiased six-sided dice. Suppose that in a sequence of
ten rolls of the dice, the outcomes are 5, 2, 6, 2, 2, 1, 2, 3, 6, 1. Then calculate the
expected and average values.

1 _ 1
[E[x]=g(1+2+3+4+5+6)=3.5 X:E(5+2+6+2+2+1+2+3+6+1):3



Expectations and Covariances

o If we are given a finite number N of points drawn from
the probability distribution or probability density, then
the expectation can be approximated as a finite sum over

these points o

NZf(xn>

o Sometimes we will be con51der1ng expectations of 154
functions of several variables, in which case we can use a
subscript to indicate which variable 1s being averaged
over

0 2000 4000 G000 BOOD 10000

Eelf ()] = ) po)f (6,y)

o We can also consider a conditional expectation with respect to a conditional distribution:

Eclfly] = ) pInf@)



Expectations and Covariances

o The variance of f(x) provides a measure of how much variability there 1s 1n f(x) around
its mean value Type equation here.

var[f] = E[(f(x) — E[f]?]

o Expanding out the square, we see that the variance can also be written in terms of the
expectations of f(x) and f(x)?

varlf] = E[f*] ~E[f]*  |Proof: Homework

o For two random variables x and y, the covariance expresses the extent to which x and y
vary together.

covlx,y] = By [{x = E[x]}y = B[Y]}] o
= E,, [xy] — E[x]E[y] . Proof: Homework

______________________________________



Expectations and Covariances

o Example

Elx] = 0 X~ 4 1 Xo4 2%~ =1 Y

[X]— Xz+ XE‘F Xz— 0 1 ) p(x)

Ely] = 0%~ +1Xo42x~=1 1 1 !

ly] = XZ+ ><2+ ><4— 0 5 5 0 4
1

va;[x]=IE1[<xIIE[x]>2]=%<o—1)2+%<1—1>2+%<z_1>2 x 1) 12! !

_Z o= 1 1 1

=7+0+7 =2 2| o . . .

var[x] = E[x?] — E[x]? = <02 X % +1% x % +2% x i) — (1)? p(y) % % %

= 1+1 1—1
S \2 2

1
var[y] = El(y — E[yD*] =5



Expectations and Covariances

o Example

Zzpoc y) (= 1y - 1)) =

%({0—1}x{0—1})+§({1—1}><{0—1})+0({2—1}><{0—1})

cov[x,y] = E,y[{x — E[x]}{y — E[y

P20 -1 x (1~ 1) 4 2 ([~ 1) X (1~ 1) + 2 (2~ 1 x {1~ 1)

+0({0—1}><{2—1})+%({1—1}><{2—1})+1({2—1}><{2—1})

8
—1+0+0+0+0+0+0+0+1—1
8 8 4

g gty —————————————————————————————————————————————————————

covlx,y| = ]Ex,y[xy] -

|

I

= > ) wypxy) 1= 040+0+042+24+0+o40—1=2 i

- PRYTTET 8" 8 88 4 i
e ——————————————————————————— e ————————————

Large negative covariance Near zero covariance

y
0 1 2
1 | 1
i I
8 | B
1 | 2 | 1
8 | 8 | 8
o | 1] 1
8 | B
11 1
2 4

p(x)

BlR N= S



Expectations and Covariances

Estimating Covariance From Data

X = [x]_)xZJ JXN] y — [yl’y2’ 'yN]

a. Find the sample mean:

1w 1w
NZ E[y]zNZyn

n=1
b. Calculate cov(x, y) as follows:
1 y1~ E[y]]
covx,y) = Do —Elx] xp—Elx] .. xy—E[] [*2 7V
yn — Ely




Expectations and Covariances

o In the case of two vectors of random variables x and y, the covariance is a matrix

cov[x,y] = Eyyl{x — E[x]Hy" — E[y"I}] = Exylxy'] — E[x]E[y"]

(X1 ] (V1] Ci1 €12 = Cn
X2 Y2 _|C21 €22 - Con
x=|2 =/ > cov(xy) =7
Xn Vi Cn1 Cn2 =+ Cnn

o ¢;j = cov(x;,y;) = E|{x; — E[x;]Hy; — Ely;1}]
o ¢;j = ¢j; (the covariance matrix 1s symmetric)

o Its diagonal elements are the individual variances: ¢;; = var(x;)



Expectations and Covariances

. . . . I e XN [y y - YVIN
Estimating Covariance Matrix From Data 21 22 x;z Yor Vow e Yon
X = . . .. y = : : < .
a. Find the sample mean vector: _X;u Xng - Xnn Vo1 Ynz - YnN|
- 1 N 7] - 1 N 7]
E[x,] = Nznzlxl Epil =5,
1N 1 ~—N
E[x] = | ElX2] = N.anlxz E[y] = | E2] = Nzn=1y2
1N 1 N
E ~ — ~
i [%n] N zn=1xn_ _[E[yn] N anlyn_
b. Calculate cov(x, y) as follows:
[x11 — Elxq] x12 —Elxq] oo xan — Elxq] 1 [y11 — Ela] Y21 — E[y2] Yn1 — E[yn]]
cov(x,y) = % x1 — E[xy]  x25 — [E:[xz] v Xy — Elxa] [ [ Y12 —:]E[Y1] Y22 —:[E[)’z] o In2 _:[E[Yn]
Xn1 — Elx,]  xpp — Elxn] o Xy — Elxp ]l Lyaw — E[y1] - yon — E[y2] Ynn — E[yn].




Bayesian Probability

o So far, we have viewed probabilities 1n terms of the frequencies of random, repeatable
events. We shall refer to this as the classical or frequentist interpretation of probability.

o Bayesian probability provides a more general tool for quantification of uncertainty, even
on unrepeatable events.

o Repeatable events: selecting a red or blue box, selecting a fruit from a box

o Unrepeatable events: whether the moon was once 1n its own orbit around the sun,
whether the Arctic ice cap will have disappeared by the end of the century



Bayesian Probability

o For example, in the case of fruits problem we know the probability of selecting each box (p(B =)

= 0.4 and p(B = b) = 0.6). We call p(B) the prior probability because it is the probability available
before we observe the identity of the fruit.

o Suppose that we are told that the fruit is an orange (new evidence), then we can use this new evidence to
update our idea of the color box (p(B|F)). We call p(B|F) the posterior probability of the box color.

o we can then use Bayes’ theorem to compute the probability p(B|F )

s
p(F|B) p(B)

p(F)

|

/'

p(B|F) =



Bayesian Probability

o For the case of polynomial curve fitting, we capture our assumptions about w, before observing the data,
in the form of a prior probability distribution p(w).

o The effect of the observed data D = {t,t,,...,ty} is expressed through the conditional probability
p(Dlw).

o Then the Bayes’ theorem allows us to evaluate the uncertainty in w after we have observed D in the form
of the posterior probability p(w|D).

p(Dlw) p(w)
p(D)

p(w|D) =



