Introduction to Machine Learning

Sadegh Eskandari
Department of Computer Science, University of Guilan

Introduction

Consider a robot with a single capability: pouring one glass into another

Question: how the robot can swap the contents of two glasses?

$$
\begin{aligned}
& C \leftarrow A \\
& A \leftarrow B \\
& B \leftarrow C
\end{aligned}
$$

Algorithm

Introduction

Consider a robot with a single capability: pouring one glass into another

A, B

Another Question: How to find the max of two glasses?
The problem is unsolvable by the robot. Why?

- The comparison operation is not defined for the robot
- To solve the problem we should change the operator

Introduction

Operator (Computer)

A, B
Problem: How to find the max of two glasses?

```
l}\begin{array}{l}{\operatorname{read}A,B}\\{\mathrm{ if A>B: }}\\{\quad\operatorname{max}=A}\\{\mathrm{ else: }}\\{\quad\operatorname{max}=\textrm{B}}\\{\mathrm{ print max }}
l}\begin{array}{l}{\mathrm{ read A,B }}\\{\mathrm{ if A>B: }}\\{\quad\operatorname{max}=\textrm{A}}\\{\mathrm{ else: }}\\{\quad\operatorname{max}=\textrm{B}}\\{\mathrm{ print max }}
l}\begin{array}{l}{\mathrm{ read A,B }}\\{\mathrm{ if A>B: }}\\{\quad\operatorname{max}=\textrm{A}}\\{\mathrm{ else: }}\\{\quad\operatorname{max}=\textrm{B}}\\{\mathrm{ print max }}
l}\begin{array}{l}{\mathrm{ read A,B }}\\{\mathrm{ if A>B: }}\\{\quad\operatorname{max}=\textrm{A}}\\{\mathrm{ else: }}\\{\quad\operatorname{max}=\textrm{B}}\\{\mathrm{ print max }}
l}\begin{array}{l}{\mathrm{ read A,B }}\\{\mathrm{ if A>B: }}\\{\quad\operatorname{max}=\textrm{A}}\\{\mathrm{ else: }}\\{\quad\operatorname{max}=\textrm{B}}\\{\mathrm{ print max }}
l}\begin{array}{l}{\mathrm{ read A,B }}\\{\mathrm{ if A>B: }}\\{\quad\operatorname{max}=\textrm{A}}\\{\mathrm{ else: }}\\{\quad\operatorname{max}=\textrm{B}}\\{\mathrm{ print max }}
Printmax_ Algoritnm
```


Introduction

- A problem is said to be Decidable if we can always construct an algorithm that can solve the problem correctly.
- An example of undecidable problems:

Can one algorithm specify the output of another algorithm?

- Decidability does not mean simplicity! Traveling Salesman Problem (TSP): simple to program but hard to execute \square Recognizing dogs and cats in an image: simple to do but hard to program

Introduction

Traveling Salesman Problem (TSP)

- For a given weighted complete graph with n nodes, find the Hamilton circuit with minimum length.
- An algorithm should compare $(n-1)$! circuits to find the best one.
- Time required to run this algorithm on a good computer:
- $n=4$ then time $\approx 0.000000007 \mathrm{~s}$
- $n=99$ then time $\approx 3.1 \times 10^{140}$ years $: 8$

Introduction

Dogs vs Cats

An effective approach: Machine Learning

Algorithms that Can Learn

Algorithms that Can Learn

(Reinforcement)

(Supervised)
(Classification)

(Regression)

(Unsupervised)

(Clustering)

(Density Estimation)

(Visualization)

Supervised Learning

- Suppose that we are given a training set comprising N observations of random variable x (training set) :

$$
\mathrm{X}=\left(x_{1}, x_{2}, \ldots, x_{N}\right)^{T}
$$

- Moreover, for each observation $\boldsymbol{x}_{\boldsymbol{i}}$ we are given a target value t_{i} (training target):

$$
\mathbf{t}=\left(t_{1}, t_{2}, \ldots, t_{N}\right)^{\boldsymbol{T}}
$$

Example: Polynomial Curve Fitting

- $\mathbf{x}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ is generated uniformaly in $[0,1]$.

○ $\boldsymbol{t}=\left\{t_{i} \mid t_{i}=\sin (2 \pi x)+\mathcal{N}(0,0.3), i=1,2, \ldots, N\right\}$

- The generating function in not known and the aim is to estimate it such that:
- The estimated function should describe the training data
- The estimated function should generalize to new data
- In particular, we shall fit the data using a polynomial function of the form

$$
y(x ; w)=w_{0}+w_{1} x+w_{2} x^{2}+\cdots+w_{M} x^{M}
$$

\square
M : the order of polynomial$w \equiv\left[w_{0}, w_{1}, \ldots, w_{M}\right]$: The model parameters (unknown in advance)

- $y(x, \boldsymbol{w})$ is a linear function of the coefficients \boldsymbol{w}. Such functions are called linear models.

Example: Polynomial Curve Fitting

- An error function (loss function) is required to measure the misfit between the function $y(x, \boldsymbol{w})$, for any given \boldsymbol{w}, and the training data points.

$$
E(\boldsymbol{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \boldsymbol{w}\right)-t_{n}\right\}^{2}
$$

- $E(\boldsymbol{w})$ is a quadratic function of \boldsymbol{w},
- Therefore $\frac{\partial E}{\partial \boldsymbol{w}}$ is linear in the elements of \boldsymbol{w}, and so the minimization of the error function has a unique
 solution, which can be found in closed form.

Example: Polynomial Curve Fitting

Example: Polynomial Curve Fitting

Model Selection (Model Comparison)

$x \quad 1$

x

	$M=0$	$M=1$	$M=6$	$M=9$
w_{0}^{\star}	0.19	0.82	0.31	0.35
w_{1}^{\star}		-1.27	7.99	232.37
w_{2}^{\star}			-25.43	-5321.83
w_{3}^{\star}			17.37	48568.31
w_{4}^{\star}				-231639.30
w_{5}^{\star}				640042.26
w_{6}^{\star}				-1061800.52
w_{7}^{\star}				1042400.18
w_{8}^{\star}				-557682.99
w_{9}^{\star}				125201.43

Example: Polynomial Curve Fitting

Model Selection (Model Comparison)

- For a given model complexity, the overfitting problem become less severe as the size of the data set increases.

- One technique that to control the over-fitting phenomenon regularization, which involves adding a penalty term to the error function.

$$
\tilde{E}(\boldsymbol{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \boldsymbol{w}\right)-t_{n}\right\}^{2}+\frac{\lambda}{2}\|\boldsymbol{w}\|^{2}
$$

Where $\|\boldsymbol{w}\|^{2}=\boldsymbol{w}^{T} \boldsymbol{w}=w_{0}^{2}+w_{1}^{2}+\cdots+w_{M}^{2}$

Example: Polynomial Curve Fitting

- The least squares approach is a specific case of maximum likelihood (will be discussed later)
- The over-fitting problem is a general property of maximum likelihood.
- By adopting a Bayesian approach, the over-fitting problem can be avoided.
- In a Bayesian model the effective number of parameters adapts automatically to the size of the data set.

