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Introduction

Consider a robot with a single capability: pouring one glass into another
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Question: how the robot can swap the contents of two glasses? E E
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Introduction

Consider a robot with a single capability: pouring one glass into another
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Another Question: How to find the max of two glasses? ﬁ
The problem is unsolvable by the robot. Why? max(4, B)

o The comparison operation is not defined for the robot -
Problem

o To solve the problem we should change the operator



Introduction

Capabilities:

o Input/Output (1/O)

o memory W/R

o Some basic arithmetic and logical operations (+,-,*,/, %, and, or, not, ...)

Operator (Computer)

A B
Problem: How to find the max of two glasses?
read A,B
if A>B: max(4, B)
else:
max = B




Introduction

o Aproblem is said to be Decidable if we can always construct an algorithm that can solve the
problem correctly.

o An example of undecidable problems:
Can one algorithm specify the output of another algorithm?

o Decidability does not mean simplicity!

 Traveling Salesman Problem (TSP): simple to program but hard to execute
1 Recognizing dogs and cats in an image: simple to do but hard to program
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Traveling Salesman Problem (TSP)

o For a given weighted complete graph with n nodes, find the Hamilton circuit with minimum
length.

o An algorithm should compare (n — 1)! circuits to find the best one.

o Time required to run this algorithm on a good computer:
d n =4 thentime = 0.000000007s

Q n =99 thentime =~ 3.1 x 10149 years ®
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Dogs vs Cats

An effective approach: Machine Learning



Algorithms that Can Learn
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A typical algorithm or function
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A Parametric Algorithm (Model)




Algorithms that Can Learn
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Supervised Learning

o Suppose that we are given a training set comprising N observations of random variable x
training set) :
( g sel) X = (%1, %2, .., x5)"

o Moreover, for each observation x; we are given a target value t; (training target):

t= (tl! tz, . tN)T

Updata ©
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Model



Example: Polynomial Curve Fitting

o X = {X1,X5, ..., xy} IS generated uniformaly in [0,1].
o t={t;|t; =sin(2nx) + N (0,0.3),i=1,2,...,N}

o The generating function in not known and the aim is

to estimate it such that: 05
O The estimated function should describe the training data 1.0 1
O The estimated function should generalize to new data

o In particular, we shall fit the data using a polynomial 15
function of the form Lo
y(x; w) = wy + wyx + wyx? + -+ wyxM -

d M: the order of polynomial
d w = [wy, Wy, ..., Wy ]: The model parameters (unknown in
advance)

o y(x,w) is a linear function of the coefficients w.
Such functions are called linear models.

0.0 0.2 04 0.6 0.8 10



Example: Polynomial Curve Fitting

o An error function (loss function) is required to measure the misfit between the function

y(x,w), for any given w, and the training data points. 1 ot
L o /
_ = _ 2
E(W) — > E{y(xn; W) tn} " y(z,, W)
n=1 /

o E(w) is a quadratic function of w, / |

OE . .. .
o Therefore P IS linear in the elements of w, and so the

minimization of the error function has a unique
solution, which can be found in closed form.




Example: Polynomial Curve Fitting

Whnew = Wold — waE(W)

Eis
optimized?

N
1
—— | fOsw) =wp +wyx + wyx? + -+ wyaM > E(w) ZEE{Y(xn;W) — t}?
n=1

Linear Model Error (loss) function



Example: Polynomial Curve Fitting

: : M=0 M=1 M=6 M =9
Model Selection (Model Comparison) | 009 082 031 035
| | | | w? 127 7.99 232.37
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Example: Polynomial Curve Fitting

Model Selection (Model Comparison)

o For a given model complexity, the over-
fitting problem become less severe as the
size of the data set increases. o

o One technique that to control the over-fitting phenomenon regularization, which involves
adding a penalty term to the error function.

1t InA=-18

X oA
Ew) =5 ) (v w) — ta)? + 5wl
n=1

Where ||w]|? = wiw = w¢ + wé + -+ w§




Example: Polynomial Curve Fitting

o The least squares approach 1s a specific case of maximum likelihood (will be discussed
later)

o The over-fitting problem 1is a general property of maximum likelihood.

By adopting a Bayesian approach, the over-fitting problem can be avoided.

o In a Bayesian model the effective number of parameters adapts automatically to the size

of the data set.
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